Idiopathic thrombocytopenic purpura pathophysiology: Difference between revisions
Nabeel ahmed (talk | contribs) No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
==Overview== | ==Overview== | ||
Atopic dermatitis is a [[chronic]] [[inflammatory]] [[skin disorder]] with an [[Immunology|immunologic]] background and occurs in patients with a personal or [[family history]] of [[atopy]] (i.e. [[asthma]] or [[allergic rhinitis]]). It is caused by either skin barrier dysfunction or immune dysregulation of the [[Adaptive immunity|adaptive]] and [[innate immune response]] leading to an enhanced [[IgE]]-mediated, systemic [[Th2 response]]. The skin barrier is invaded by [[exogenous]] substances, including [[allergens]], [[irritants]] and [[microbes]]; and the tightly packed structure of the [[stratum corneum]] is further compromised. Systemically, a dysfunctional [[Innate immune system|innate]] and [[adaptive immune response]] causes further damage to the [[epidermis]]. | |||
==Pathophysiology== | ==Pathophysiology== | ||
===Physiology=== | |||
The normal physiology of atopic dermatitis can be understood as follows: | |||
'''Epidermal barrier function:''' | |||
* '''Epidermis''': It directly interfaces with the [[Environment (biophysical)|environment]] and acts as the 1st line of defense. It is primarily dependent on the structure and composition of the most outermost layer of the skin, i.e. [[stratum corneum]]. It protects the body from [[irritants]], [[allergens]], [[microbes]], and [[pathogens]] from invading the skin as well as preventing the excess water loss.<ref name="pmid25131691">{{cite journal |vauthors=Elias PM, Wakefield JS |title=Mechanisms of abnormal lamellar body secretion and the dysfunctional skin barrier in patients with atopic dermatitis |journal=J. Allergy Clin. Immunol. |volume=134 |issue=4 |pages=781–791.e1 |date=October 2014 |pmid=25131691 |pmc=4186911 |doi=10.1016/j.jaci.2014.05.048 |url=}}</ref> Epidermis consists of: | |||
** Tightly packed corneocytes layers in the [[stratum corneum]] | |||
** Intercellular lipid bilayers | |||
** Corneocytes layers embedded in the [[extracellular matrix]] derived from lipid lamellae | |||
** Natural moisturising factors (NMF), maintaining the water retention in the [[stratum corneum]] | |||
** [[Antimicrobial peptides]] | |||
* '''Filaggrin proteins:''' It is encoded by [[Filaggrin|filaggrin gene ''FLG'']] on [[chromosome]] 1q21 (contains the genes of the [[epidermal differentiation complex]] (EDC)) and is the main component required to form corneocytes in the [[stratum corneum]].<ref name="pmid19386895">{{cite journal |vauthors=Sandilands A, Sutherland C, Irvine AD, McLean WH |title=Filaggrin in the frontline: role in skin barrier function and disease |journal=J. Cell. Sci. |volume=122 |issue=Pt 9 |pages=1285–94 |date=May 2009 |pmid=19386895 |pmc=2721001 |doi=10.1242/jcs.033969 |url=}}</ref> | |||
** Pro-filaggrin is required for the formation of dense [[cytoplasmic]] granules, which along with other proteins forms the corneocytes that acts as a primary unit for the barrier function of the [[skin]]. | |||
** Pro-filaggrin undergoes extensive [[phosphorylation]] and [[dephosphorylation]], to produce [[filaggrin]] monomers to interact and aggregate with the [[keratin]] filaments and permits extensive crosslinking, to form a highly insoluble [[keratin]] matrix.<ref name="pmid193868952">{{cite journal |vauthors=Sandilands A, Sutherland C, Irvine AD, McLean WH |title=Filaggrin in the frontline: role in skin barrier function and disease |journal=J. Cell. Sci. |volume=122 |issue=Pt 9 |pages=1285–94 |date=May 2009 |pmid=19386895 |pmc=2721001 |doi=10.1242/jcs.033969 |url=}}</ref> | |||
** The degraded products of [[filaggrin]] protein are one of the major components of natural moisturising factors (NMF), which prevents excess water loss from the [[stratum corneum]]. | |||
** The degraded products of [[filaggrin]] protein also maintain the acidic pH of the [[stratum corneum]], required to regulate the activity of [[enzymes]]. | |||
* '''Proteins related to tight junctions''': These [[transmembrane proteins]] are present in the [[stratum granulosum]] of the [[epidermis]] and compose together to form [[tight junctions]] which includes [[Claudins|claudin-1]], [[occludin]], junctional adhesion molecule.<ref name="pmid211635152">{{cite journal |vauthors=De Benedetto A, Rafaels NM, McGirt LY, Ivanov AI, Georas SN, Cheadle C, Berger AE, Zhang K, Vidyasagar S, Yoshida T, Boguniewicz M, Hata T, Schneider LC, Hanifin JM, Gallo RL, Novak N, Weidinger S, Beaty TH, Leung DY, Barnes KC, Beck LA |title=Tight junction defects in patients with atopic dermatitis |journal=J. Allergy Clin. Immunol. |volume=127 |issue=3 |pages=773–86.e1–7 |date=March 2011 |pmid=21163515 |pmc=3049863 |doi=10.1016/j.jaci.2010.10.018 |url=}}</ref> | |||
* '''Other proteins''': Filaggrin-2, [[corneodesmosin]], [[desmoglein-1]], desmocollin-1, [[Transglutaminase|transglutaminase-3]] are also part of skin barrier related proteins.<ref name="pmid21211653">{{cite journal |vauthors=Broccardo CJ, Mahaffey S, Schwarz J, Wruck L, David G, Schlievert PM, Reisdorph NA, Leung DY |title=Comparative proteomic profiling of patients with atopic dermatitis based on history of eczema herpeticum infection and Staphylococcus aureus colonization |journal=J. Allergy Clin. Immunol. |volume=127 |issue=1 |pages=186–93, 193.e1–11 |date=January 2011 |pmid=21211653 |pmc=3059191 |doi=10.1016/j.jaci.2010.10.033 |url=}}</ref> | |||
'''Immune response:''' | |||
* '''Cutaneous immune response''': It acts as the first-line barrier and constitutes the rapid response mechanism to the invading [[Allergens|allergen]] or [[pathogen]].<ref name="pmid20109730">{{cite journal |vauthors=Barnes KC |title=An update on the genetics of atopic dermatitis: scratching the surface in 2009 |journal=J. Allergy Clin. Immunol. |volume=125 |issue=1 |pages=16–29.e1–11; quiz 30–1 |date=January 2010 |pmid=20109730 |pmc=2874322 |doi=10.1016/j.jaci.2009.11.008 |url=}}</ref> It recognizes the [[microbes]] through receptors known as [[pattern recognition receptors]] (PRRs). The cutaneous immune response includes the following 4 elements:<ref name="pmid233742592">{{cite journal |vauthors=Kuo IH, Yoshida T, De Benedetto A, Beck LA |title=The cutaneous innate immune response in patients with atopic dermatitis |journal=J. Allergy Clin. Immunol. |volume=131 |issue=2 |pages=266–78 |date=February 2013 |pmid=23374259 |doi=10.1016/j.jaci.2012.12.1563 |url=}}</ref> | |||
** ''Physical:'' [[Stratum corneum]] and the [[tight junctions]] in [[stratum granulosum]] forms the physical barrier. The maintenance and repair of [[epithelial]] barriers are mediated th<nowiki/>rough the activation of [[Pattern recognition receptors|PRR]]<nowiki/>s by the [[innate immune system]].<ref name="pmid15236188">{{cite journal |vauthors=Cario E, Gerken G, Podolsky DK |title=Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C |journal=Gastroenterology |volume=127 |issue=1 |pages=224–38 |date=July 2004 |pmid=15236188 |doi= |url=}}</ref> | |||
** ''Chemical:'' Chemical constitutes antimicrobial proteins including [[antimicrobial peptides]] (AMPs), S100 proteins, [[cytokines]] as well as [[chemokines]], innate lymphoid cells group 2 (ILC-2), [[toll-like receptors]] (TLRs), [[keratinocytes]], filaggrin degraded products, and [[neutrophils]].<ref name="pmid23374259">{{cite journal |vauthors=Kuo IH, Yoshida T, De Benedetto A, Beck LA |title=The cutaneous innate immune response in patients with atopic dermatitis |journal=J. Allergy Clin. Immunol. |volume=131 |issue=2 |pages=266–78 |date=February 2013 |pmid=23374259 |doi=10.1016/j.jaci.2012.12.1563 |url=}}</ref><ref name="pmid232231422">{{cite journal |vauthors=Kuo IH, Carpenter-Mendini A, Yoshida T, McGirt LY, Ivanov AI, Barnes KC, Gallo RL, Borkowski AW, Yamasaki K, Leung DY, Georas SN, De Benedetto A, Beck LA |title=Activation of epidermal toll-like receptor 2 enhances tight junction function: implications for atopic dermatitis and skin barrier repair |journal=J. Invest. Dermatol. |volume=133 |issue=4 |pages=988–98 |date=April 2013 |pmid=23223142 |pmc=3600383 |doi=10.1038/jid.2012.437 |url=}}</ref> | |||
** [[Microbiome|''Microbiome'']]: Microbiome consists of skin-resident normal microbial flora including [[bacteria]], [[fungi]], and [[viruses]]. It provides protection against invading [[microbes]] and [[pathogens]], and modulates the balance between [[inflammation]] and [[immune responses]].<ref name="pmid279740402">{{cite journal |vauthors=Lynch SV, Pedersen O |title=The Human Intestinal Microbiome in Health and Disease |journal=N. Engl. J. Med. |volume=375 |issue=24 |pages=2369–2379 |date=December 2016 |pmid=27974040 |doi=10.1056/NEJMra1600266 |url=}}</ref> | |||
** ''Immunological'': Immune response includes both [[Innate immune response|non-specific]] and immediate response ([[innate immunity]]) and highly specific and late response ([[adaptive immunity]]). | |||
* '''Adaptive Immune response''':<ref name="pmid20109730" /> | |||
** The character and magnitude of the [[Adaptive immune response|adaptive immune]] system is determined by the innate immune response by interactions with the epidermal elements and activation of TLRs.<ref name="pmid19078985">{{cite journal |vauthors=De Benedetto A, Agnihothri R, McGirt LY, Bankova LG, Beck LA |title=Atopic dermatitis: a disease caused by innate immune defects? |journal=J. Invest. Dermatol. |volume=129 |issue=1 |pages=14–30 |date=January 2009 |pmid=19078985 |doi=10.1038/jid.2008.259 |url=}}</ref> | |||
* '''Thymic stromal lymphopoietin:''' | |||
**<nowiki/> [[Thymic stromal lymphopoietin]] ([[TSLP]]) is considered as a master switch for [[allergic inflammation]], and is highly expressed by [[epithelial cells]] and epidermal [[keratinocytes]].<ref name="pmid16432252">{{cite journal |vauthors=Liu YJ |title=Thymic stromal lymphopoietin: master switch for allergic inflammation |journal=J. Exp. Med. |volume=203 |issue=2 |pages=269–73 |date=February 2006 |pmid=16432252 |pmc=2118215 |doi=10.1084/jem.20051745 |url=}}</ref><ref name="pmid22270071">{{cite journal |vauthors=Takai T |title=TSLP expression: cellular sources, triggers, and regulatory mechanisms |journal=Allergol Int |volume=61 |issue=1 |pages=3–17 |date=March 2012 |pmid=22270071 |doi=10.2332/allergolint.11-RAI-0395 |url=}}</ref> | |||
**<nowiki/>It is an [[Interleukin 7|IL-7]]-like [[cytokine]], which stimulates the differentiation of naïve [[T helper cells]] into [[Th2 response|inflammatory Th2 cells]].<ref name="pmid164322522">{{cite journal |vauthors=Liu YJ |title=Thymic stromal lymphopoietin: master switch for allergic inflammation |journal=J. Exp. Med. |volume=203 |issue=2 |pages=269–73 |date=February 2006 |pmid=16432252 |pmc=2118215 |doi=10.1084/jem.20051745 |url=}}</ref> | |||
===Pathogenesis=== | |||
* Common cause of ITP is [[autoimmune]] .<ref>{{cite journal |author=Coopamah M, Garvey M, Freedman J, Semple J |title=Cellular immune mechanisms in autoimmune thrombocytopenic purpura: An update |journal=Transfus Med Rev |volume=17 |issue=1 |pages=69–80 |year=2003 |pmid=12522773}}</ref> | * Common cause of ITP is [[autoimmune]] .<ref>{{cite journal |author=Coopamah M, Garvey M, Freedman J, Semple J |title=Cellular immune mechanisms in autoimmune thrombocytopenic purpura: An update |journal=Transfus Med Rev |volume=17 |issue=1 |pages=69–80 |year=2003 |pmid=12522773}}</ref> | ||
* Auto [[antibodies]] against platelets is detected in approximately 60% of cases. | * Auto [[antibodies]] against platelets is detected in approximately 60% of cases. | ||
Line 15: | Line 48: | ||
* Ultrastructural studies of the bone marrow in ITP show increased signs of megakaryocyte [[apoptosis]] and reduced platelet shedding. | * Ultrastructural studies of the bone marrow in ITP show increased signs of megakaryocyte [[apoptosis]] and reduced platelet shedding. | ||
* Recent studies suggests that the stimulus for autoantibody production in ITP is due to abnormal [[T helper cell]]s reacting with platelet antigens on the surface of antigen presenting cells.<ref>{{cite journal |author=Semple JW, Freedman J |title=Increased antiplatelet T helper lymphocyte reactivity in patients with autoimmune thrombocytopenia |journal=Blood |volume=78 |issue=10 |pages=2619-25 |year=1991 |pmid=1840468 |doi=}}</ref> This important finding suggests that therapies directed towards T cells may be effective in treating ITP.<ref name="pmid28208757">{{cite journal |vauthors=Zufferey A, Kapur R, Semple JW |title=Pathogenesis and Therapeutic Mechanisms in Immune Thrombocytopenia (ITP) |journal=J Clin Med |volume=6 |issue=2 |pages= |date=February 2017 |pmid=28208757 |pmc=5332920 |doi=10.3390/jcm6020016 |url=}}</ref> | * Recent studies suggests that the stimulus for autoantibody production in ITP is due to abnormal [[T helper cell]]s reacting with platelet antigens on the surface of antigen presenting cells.<ref>{{cite journal |author=Semple JW, Freedman J |title=Increased antiplatelet T helper lymphocyte reactivity in patients with autoimmune thrombocytopenia |journal=Blood |volume=78 |issue=10 |pages=2619-25 |year=1991 |pmid=1840468 |doi=}}</ref> This important finding suggests that therapies directed towards T cells may be effective in treating ITP.<ref name="pmid28208757">{{cite journal |vauthors=Zufferey A, Kapur R, Semple JW |title=Pathogenesis and Therapeutic Mechanisms in Immune Thrombocytopenia (ITP) |journal=J Clin Med |volume=6 |issue=2 |pages= |date=February 2017 |pmid=28208757 |pmc=5332920 |doi=10.3390/jcm6020016 |url=}}</ref> | ||
It is understood that atopic dermatitis is the result of either skin barrier dysfunction or by immune dysregulation.<ref name="pmid21682749">{{cite journal |vauthors=Boguniewicz M, Leung DY |title=Atopic dermatitis: a disease of altered skin barrier and immune dysregulation |journal=Immunol. Rev. |volume=242 |issue=1 |pages=233–46 |date=July 2011 |pmid=21682749 |pmc=3122139 |doi=10.1111/j.1600-065X.2011.01027.x |url=}}</ref> | |||
'''Epidermal barrier dysfunction (outside-in hypothesis):'''<ref name="pmid183290874">{{cite journal |vauthors=Elias PM, Hatano Y, Williams ML |title=Basis for the barrier abnormality in atopic dermatitis: outside-inside-outside pathogenic mechanisms |journal=J. Allergy Clin. Immunol. |volume=121 |issue=6 |pages=1337–43 |date=June 2008 |pmid=18329087 |pmc=2706021 |doi=10.1016/j.jaci.2008.01.022 |url=}}</ref> | |||
* The major factors causing abnormal skin barrier include loss-of-function mutations in the [[filaggrin]] gene (FLG) resulting in:<ref name="pmid22521249">{{cite journal |vauthors=Morizane S, Yamasaki K, Kajita A, Ikeda K, Zhan M, Aoyama Y, Gallo RL, Iwatsuki K |title=TH2 cytokines increase kallikrein 7 expression and function in patients with atopic dermatitis |journal=J. Allergy Clin. Immunol. |volume=130 |issue=1 |pages=259–61.e1 |date=July 2012 |pmid=22521249 |pmc=3387356 |doi=10.1016/j.jaci.2012.03.006 |url=}}</ref><ref name="pmid22951058">{{cite journal |vauthors=Margolis DJ, Apter AJ, Gupta J, Hoffstad O, Papadopoulos M, Campbell LE, Sandilands A, McLean WH, Rebbeck TR, Mitra N |title=The persistence of atopic dermatitis and filaggrin (FLG) mutations in a US longitudinal cohort |journal=J. Allergy Clin. Immunol. |volume=130 |issue=4 |pages=912–7 |date=October 2012 |pmid=22951058 |pmc=3462287 |doi=10.1016/j.jaci.2012.07.008 |url=}}</ref><ref name="pmid23374260">{{cite journal |vauthors=McAleer MA, Irvine AD |title=The multifunctional role of filaggrin in allergic skin disease |journal=J. Allergy Clin. Immunol. |volume=131 |issue=2 |pages=280–91 |date=February 2013 |pmid=23374260 |doi=10.1016/j.jaci.2012.12.668 |url=}}</ref> | |||
** Filaggrin protein deficiency<ref name="pmid19720210">{{cite journal |vauthors=Howell MD, Kim BE, Gao P, Grant AV, Boguniewicz M, DeBenedetto A, Schneider L, Beck LA, Barnes KC, Leung DY |title=Cytokine modulation of atopic dermatitis filaggrin skin expression |journal=J. Allergy Clin. Immunol. |volume=124 |issue=3 Suppl 2 |pages=R7–R12 |date=September 2009 |pmid=19720210 |doi=10.1016/j.jaci.2009.07.012 |url=}}</ref> | |||
** [[Tight junction]] abnormalities<ref name="pmid21163515">{{cite journal |vauthors=De Benedetto A, Rafaels NM, McGirt LY, Ivanov AI, Georas SN, Cheadle C, Berger AE, Zhang K, Vidyasagar S, Yoshida T, Boguniewicz M, Hata T, Schneider LC, Hanifin JM, Gallo RL, Novak N, Weidinger S, Beaty TH, Leung DY, Barnes KC, Beck LA |title=Tight junction defects in patients with atopic dermatitis |journal=J. Allergy Clin. Immunol. |volume=127 |issue=3 |pages=773–86.e1–7 |date=March 2011 |pmid=21163515 |pmc=3049863 |doi=10.1016/j.jaci.2010.10.018 |url=}}</ref> | |||
** More [[alkaline]] surface pH<ref name="pmid18329087">{{cite journal |vauthors=Elias PM, Hatano Y, Williams ML |title=Basis for the barrier abnormality in atopic dermatitis: outside-inside-outside pathogenic mechanisms |journal=J. Allergy Clin. Immunol. |volume=121 |issue=6 |pages=1337–43 |date=June 2008 |pmid=18329087 |pmc=2706021 |doi=10.1016/j.jaci.2008.01.022 |url=}}</ref> | |||
** [[Microbial]] colonization | |||
** Altered [[Proteases|protease]] activity in the [[stratum corneum]]<ref name="pmid16815133">{{cite journal |vauthors=Cork MJ, Robinson DA, Vasilopoulos Y, Ferguson A, Moustafa M, MacGowan A, Duff GW, Ward SJ, Tazi-Ahnini R |title=New perspectives on epidermal barrier dysfunction in atopic dermatitis: gene-environment interactions |journal=J. Allergy Clin. Immunol. |volume=118 |issue=1 |pages=3–21; quiz 22–3 |date=July 2006 |pmid=16815133 |doi=10.1016/j.jaci.2006.04.042 |url=}}</ref> | |||
* Skin barrier abnormalities lead to the increased permeability of the [[epidermis]]. | |||
** This leads to entry of [[antigens]] or [[pathogens]] resulting in [[microbial]] colonization, most notably by ''[[staphylococcus aureus]]'' and [[herpes simplex virus (HSV)]]. | |||
** These sequence of events results in the production of inflammatory [[cytokines]] and impaired production of [[antimicrobial peptides]].<ref name="pmid23712284">{{cite journal |vauthors=Leung DY |title=New insights into atopic dermatitis: role of skin barrier and immune dysregulation |journal=Allergol Int |volume=62 |issue=2 |pages=151–61 |date=June 2013 |pmid=23712284 |doi=10.2332/allergolint.13-RAI-0564 |url=}}</ref> | |||
* Skin barrier abnormalities also leads to increased [[Transepidermal water loss|trans-epidermal water loss]], and decreased levels of [[Ceramide|ceramides]] and water binding.<ref name="pmid19494826">{{cite journal| author=Cork MJ, Danby SG, Vasilopoulos Y, Hadgraft J, Lane ME, Moustafa M et al.| title=Epidermal barrier dysfunction in atopic dermatitis. | journal=J Invest Dermatol | year= 2009 | volume= 129 | issue= 8 | pages= 1892-908 | pmid=19494826 | doi=10.1038/jid.2009.133 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19494826 }} </ref> | |||
* Severe atopic dermatitis has been associated with higher levels of [[Transepidermal water loss|trans-epidermal water loss]].<ref name="pmid21137118">{{cite journal |vauthors=Flohr C, England K, Radulovic S, McLean WH, Campbel LE, Barker J, Perkin M, Lack G |title=Filaggrin loss-of-function mutations are associated with early-onset eczema, eczema severity and transepidermal water loss at 3 months of age |journal=Br. J. Dermatol. |volume=163 |issue=6 |pages=1333–6 |date=December 2010 |pmid=21137118 |doi= |url=}}</ref> | |||
'''Immune dysregulation (inside-out’ hypothesis):'''<ref name="pmid183290872">{{cite journal |vauthors=Elias PM, Hatano Y, Williams ML |title=Basis for the barrier abnormality in atopic dermatitis: outside-inside-outside pathogenic mechanisms |journal=J. Allergy Clin. Immunol. |volume=121 |issue=6 |pages=1337–43 |date=June 2008 |pmid=18329087 |pmc=2706021 |doi=10.1016/j.jaci.2008.01.022 |url=}}</ref> | |||
* '''Innate immune response:''' | |||
**Pathogens or tissue damage activate pattern recognition receptors including [[toll-like receptors]] (TLRs), which further induces a release of inflammatory mediators<nowiki/>, including [[Antimicrobial peptides|AMP]]<nowiki/>s, [[cytokines]], and [[chemokines]].<ref name="pmid23223142">{{cite journal |vauthors=Kuo IH, Carpenter-Mendini A, Yoshida T, McGirt LY, Ivanov AI, Barnes KC, Gallo RL, Borkowski AW, Yamasaki K, Leung DY, Georas SN, De Benedetto A, Beck LA |title=Activation of epidermal toll-like receptor 2 enhances tight junction function: implications for atopic dermatitis and skin barrier repair |journal=J. Invest. Dermatol. |volume=133 |issue=4 |pages=988–98 |date=April 2013 |pmid=23223142 |pmc=3600383 |doi=10.1038/jid.2012.437 |url=}}</ref> | |||
**Defective cutaneous [[Innate immune system|innate immune]]-mediated epidermal barrier repair and maintenance may alter skin-resident normal microbial flora and lead to severe [[inflammation]] as demonstrated with atopic dermatitis patients colonized with [[Staphylococcus aureus|s''taphylococcus aureus'']]''.''<ref name="pmid22310478">{{cite journal |vauthors=Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, Nomicos E, Polley EC, Komarow HD, Murray PR, Turner ML, Segre JA |title=Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis |journal=Genome Res. |volume=22 |issue=5 |pages=850–9 |date=May 2012 |pmid=22310478 |pmc=3337431 |doi=10.1101/gr.131029.111 |url=}}</ref> | |||
**In intact skin barrier, [[Antimicrobial peptides|antimicrobial peptides (AMPs)]] are regulated by [[cytokines]], [[Interleukin 17|IL-17]], and [[Interleukin 22|IL- 22]], which are secreted by [[T helper 17 cell|Th17]] and [[T helper cell|Th22]] cells. This effect is suppressed in patients with atopic dermatitis.<ref name="pmid21315950">{{cite journal |vauthors=Macias ES, Pereira FA, Rietkerk W, Safai B |title=Superantigens in dermatology |journal=J. Am. Acad. Dermatol. |volume=64 |issue=3 |pages=455–72; quiz 473–4 |date=March 2011 |pmid=21315950 |doi=10.1016/j.jaad.2010.03.044 |url=}}</ref> | |||
* '''Adaptive immune response:''' | |||
**Increased [[allergen]] penetration through the damaged [[epidermis]] leading to a [[Th2 response|Th2]]-type milieu is thought to explain the critical link between the barrier defect of atopic dermatitis patients with FLG mutations and Th2 polarization.<ref name="pmid216827492">{{cite journal |vauthors=Boguniewicz M, Leung DY |title=Atopic dermatitis: a disease of altered skin barrier and immune dysregulation |journal=Immunol. Rev. |volume=242 |issue=1 |pages=233–46 |date=July 2011 |pmid=21682749 |pmc=3122139 |doi=10.1111/j.1600-065X.2011.01027.x |url=}}</ref> | |||
**Enhanced expression of [[Th2 response|Th2]], [[Th17]], and Th22 cytokines, characterize the [[acute]] initiation of atopic dermatitis lesions.<ref name="pmid25282559">{{cite journal |vauthors=Leung DY, Guttman-Yassky E |title=Deciphering the complexities of atopic dermatitis: shifting paradigms in treatment approaches |journal=J. Allergy Clin. Immunol. |volume=134 |issue=4 |pages=769–79 |date=October 2014 |pmid=25282559 |pmc=4186710 |doi=10.1016/j.jaci.2014.08.008 |url=}}</ref> | |||
**Epidermal barrier function is regulated through [[Th2]] and Th22 cytokines ([[Interleukin 4|IL-4]], [[Interleukin 13|IL-13,]] [[Interleukin 31|IL-31]], and [[Interleukin 22|IL-22]]) by:<ref name="pmid252825593">{{cite journal |vauthors=Leung DY, Guttman-Yassky E |title=Deciphering the complexities of atopic dermatitis: shifting paradigms in treatment approaches |journal=J. Allergy Clin. Immunol. |volume=134 |issue=4 |pages=769–79 |date=October 2014 |pmid=25282559 |pmc=4186710 |doi=10.1016/j.jaci.2014.08.008 |url=}}</ref> | |||
***Stimulating epidermal [[hyperplasia]] | |||
***Inhibiting the expression of terminal keratinocyte differentiation genes (eg, ''FLG'', [[loricrin]], [[involucrin]]) | |||
***Suppressing the production of [[Antimicrobial peptides|AMPs]] | |||
* '''Thymic stromal lymphopoietin:''' | |||
**Defective skin barrier and enhanced [[epidermal]] [[protease]] activity, which is reported in atopic dermatitis, promote [[TSLP]] production and [[Th2 response]], leading to atopic dermatitis-like [[inflammation]].<ref name="pmid222700712">{{cite journal |vauthors=Takai T |title=TSLP expression: cellular sources, triggers, and regulatory mechanisms |journal=Allergol Int |volume=61 |issue=1 |pages=3–17 |date=March 2012 |pmid=22270071 |doi=10.2332/allergolint.11-RAI-0395 |url=}}</ref> | |||
**''[[TSLP]]'' polymorphisms have been linked to the severity of atopic dermatitis. | |||
**[[TSLP]] genetic variants are associated with atopic dermatitis and [[eczema herpeticum]].<ref name="pmid20466416">{{cite journal |vauthors=Gao PS, Rafaels NM, Mu D, Hand T, Murray T, Boguniewicz M, Hata T, Schneider L, Hanifin JM, Gallo RL, Gao L, Beaty TH, Beck LA, Leung DY, Barnes KC |title=Genetic variants in thymic stromal lymphopoietin are associated with atopic dermatitis and eczema herpeticum |journal=J. Allergy Clin. Immunol. |volume=125 |issue=6 |pages=1403–1407.e4 |date=June 2010 |pmid=20466416 |pmc=2925504 |doi=10.1016/j.jaci.2010.03.016 |url=}}</ref> | |||
**In patients with defective skin barrier due to [[Filaggrin|FLG]] mutations, [[TSLP]] genetic variants are associated with reduced [[probability]] of having persistent atopic dermatitis.<ref name="pmid24401911">{{cite journal |vauthors=Margolis DJ, Kim B, Apter AJ, Gupta J, Hoffstad O, Papadopoulos M, Mitra N |title=Thymic stromal lymphopoietin variation, filaggrin loss of function, and the persistence of atopic dermatitis |journal=JAMA Dermatol |volume=150 |issue=3 |pages=254–9 |date=March 2014 |pmid=24401911 |pmc=4414492 |doi=10.1001/jamadermatol.2013.7954 |url=}}</ref> | |||
== Genetics == | |||
Recent studies have established a strong genetic association of atopic dermatitis. Twin studies have indicated high [[heritability]] of atopic dermatitis with a [[Concordance (genetics)|concordance]] rate of 72–86 % for [[monozygotic twins]] compared with 21–23 % for [[dizygotic twins]].<ref name="pmid27004062">{{cite journal |vauthors=Al-Shobaili HA, Ahmed AA, Alnomair N, Alobead ZA, Rasheed Z |title=Molecular Genetic of Atopic dermatitis: An Update |journal=Int J Health Sci (Qassim) |volume=10 |issue=1 |pages=96–120 |date=January 2016 |pmid=27004062 |pmc=4791162 |doi= |url=}}</ref> | |||
Genes involved in the pathogenesis of atopic dermatitis include:<ref name="pmid270040623">{{cite journal |vauthors=Al-Shobaili HA, Ahmed AA, Alnomair N, Alobead ZA, Rasheed Z |title=Molecular Genetic of Atopic dermatitis: An Update |journal=Int J Health Sci (Qassim) |volume=10 |issue=1 |pages=96–120 |date=January 2016 |pmid=27004062 |pmc=4791162 |doi= |url=}}</ref> | |||
{| class="wikitable" | |||
|+ | |||
! colspan="3" style="background: #4479BA; color: #FFFFFF; text-align: center;" |Genes involved in the pathogenesis of atopic dermatitis | |||
|- | |||
| colspan="2" style="background: #7d7d7d; color: #FFFFFF; text-align: center;" |'''Filaggrin Gene mutation''' | |||
| | |||
* Located on [[chromosome]] 1q21 [[Epidermal differentiation complex|(epidermal differentiation complex]]) loss-of-function mutations in the filaggrin gene FLG, is strongly associated with a broad range of skin and [[allergic]] diseases including atopic dermatitis.<ref name="pmid21991953">{{cite journal |vauthors=Irvine AD, McLean WH, Leung DY |title=Filaggrin mutations associated with skin and allergic diseases |journal=N. Engl. J. Med. |volume=365 |issue=14 |pages=1315–27 |date=October 2011 |pmid=21991953 |doi=10.1056/NEJMra1011040 |url=}}</ref> | |||
* Mutation in this gene is also responsible for [[ichthyosis vulgaris]] and [[pachyonychia congenita]].<ref name="pmid17657246">{{cite journal |vauthors=Liao H, Waters AJ, Goudie DR, Aitken DA, Graham G, Smith FJ, Lewis-Jones S, McLean WH |title=Filaggrin mutations are genetic modifying factors exacerbating X-linked ichthyosis |journal=J. Invest. Dermatol. |volume=127 |issue=12 |pages=2795–8 |date=December 2007 |pmid=17657246 |doi=10.1038/sj.jid.5700971 |url=}}</ref> | |||
* The common genetic variant R510X and 2282del4 are very strongly associated with atopic dermatitis.<ref name="pmid16550169">{{cite journal |vauthors=Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP, Goudie DR, Sandilands A, Campbell LE, Smith FJ, O'Regan GM, Watson RM, Cecil JE, Bale SJ, Compton JG, DiGiovanna JJ, Fleckman P, Lewis-Jones S, Arseculeratne G, Sergeant A, Munro CS, El Houate B, McElreavey K, Halkjaer LB, Bisgaard H, Mukhopadhyay S, McLean WH |title=Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis |journal=Nat. Genet. |volume=38 |issue=4 |pages=441–6 |date=April 2006 |pmid=16550169 |doi=10.1038/ng1767 |url=}}</ref> | |||
* FLG Gene mutation is associated with developing atopic dermatitis at an early age(≤8 years) but is not associated with late childhood or adulthood atopic dermatitis.<ref name="pmid25314673">{{cite journal |vauthors=Rupnik H, Rijavec M, Korošec P |title=Filaggrin loss-of-function mutations are not associated with atopic dermatitis that develops in late childhood or adulthood |journal=Br. J. Dermatol. |volume=172 |issue=2 |pages=455–61 |date=February 2015 |pmid=25314673 |doi=10.1111/bjd.13477 |url=}}</ref> | |||
|- | |||
| colspan="2" style="background: #7d7d7d; color: #FFFFFF; text-align: center;" |'''SPINK5 and LEKTI gene''' | |||
| | |||
* Located on chromosome 5q32, [[SPINK5|Serine Protease Inhibitor Kazal-Type 5 (SPINK5]]) gene encodes a [[protease inhibitor]] lymphoepithelial Kazal-type-Related Inhibitor (LEKTI), which is involved in converting profilaggrin into filaggrin and is responsible for marinating the permeability of the normal skin.<ref name="pmid270040622">{{cite journal |vauthors=Al-Shobaili HA, Ahmed AA, Alnomair N, Alobead ZA, Rasheed Z |title=Molecular Genetic of Atopic dermatitis: An Update |journal=Int J Health Sci (Qassim) |volume=10 |issue=1 |pages=96–120 |date=January 2016 |pmid=27004062 |pmc=4791162 |doi= |url=}}</ref> | |||
* [[LEKTI]] deficiency leads to enhanced cleavage of intercellular attachments, decreased corneocyte cohesion and impaired skin barrier function.<ref name="pmid168151332">{{cite journal |vauthors=Cork MJ, Robinson DA, Vasilopoulos Y, Ferguson A, Moustafa M, MacGowan A, Duff GW, Ward SJ, Tazi-Ahnini R |title=New perspectives on epidermal barrier dysfunction in atopic dermatitis: gene-environment interactions |journal=J. Allergy Clin. Immunol. |volume=118 |issue=1 |pages=3–21; quiz 22–3 |date=July 2006 |pmid=16815133 |doi=10.1016/j.jaci.2006.04.042 |url=}}</ref> | |||
|- | |||
| colspan="2" style="background: #7d7d7d; color: #FFFFFF; text-align: center;" |'''MHC (or HLA) genes''' | |||
| | |||
* Major histocompatibility complex or human leukocyte antigen | |||
|- | |||
| colspan="2" style="background: #7d7d7d; color: #FFFFFF; text-align: center;" |'''Innate Immune system genes''': | |||
| | |||
* CARD4 (or NOD1) gene: Caspase recruitment domain–containing protein (CARD) 4 | |||
* CARD15 (or NOD2) gene | |||
* Monocyte differentiation antigen (or [[CD14|CD14)]] gene | |||
* MBL2 gene: [[Mannose-binding lectin pathway|mannose-binding lectin]] '''('''MBL2) gene | |||
* [[Toll-like receptors|Toll-like receptor]]( [[TLR2]], [[TLR4]], [[TLR6]] and [[TLR 9]]) genes | |||
* DEFB1 gene: human β-defensin 1 | |||
|- | |||
| rowspan="2" style="background: #7d7d7d; color: #FFFFFF; text-align: center;" |'''Adaptive immune system genes''' | |||
| style="background: #DCDCDC; text-align: center;" |'''Cytokines and related genes''': | |||
| | |||
* [[Interleukin 4|IL-4]] gene | |||
* IL-4Rα gene | |||
* [[STAT6]] gene (Signal transducer and activator of transcription ) | |||
* [[Interleukin 10|IL-10]] gene | |||
* [[Interleukin 6|IL-6]] gene | |||
* [[Tumor necrosis factor-alpha|TNF-α]] gene | |||
* TNF-β gene | |||
* IL-1α gene | |||
* IL-β gene | |||
* IFNγ gene | |||
* IL-1RL1 | |||
* [[Interleukin 5|IL-5]] gene | |||
* [[Interleukin 12|IL-12]] β gene | |||
* IL-12R β | |||
* [[Interleukin 13|IL-13]] gene | |||
* IL-18 gene | |||
* TGF-β1 gene | |||
* [[GM-CSF]] gene | |||
* [[IL-9]] gene | |||
* IL-9R gene | |||
|- | |||
| style="background: #DCDCDC; text-align: center;" |'''Chemokines and related genes''': | |||
| | |||
* CCL5 gene: Chemokine (C-Cmotif) ligand 5 | |||
* [[CCL11]] gene | |||
* CCL17 gene | |||
* CCR3 gene | |||
* CCR4 gene | |||
* CMA1 gene: Mast cell chymase 1 | |||
|- | |||
| colspan="2" style="background: #7d7d7d; color: #FFFFFF; text-align: center;" |'''Drug-metabolizing genes''' | |||
| | |||
* GST genes: glutathione S-transferase | |||
* NAT-2 gene: N-acetyl transferase | |||
|- | |||
| colspan="2" style="background: #7d7d7d; color: #FFFFFF; text-align: center;" |'''Other genes''' | |||
| | |||
* CTLA-4 | |||
* KLK | |||
* RUNX1 gene | |||
* IRF2 gene | |||
* FCER1B gene | |||
* PHF11 gene | |||
|- | |||
| colspan="3" |Adapted from ''Molecular Genetic of Atopic dermatitis: An Update''<ref name="pmid270040624">{{cite journal |vauthors=Al-Shobaili HA, Ahmed AA, Alnomair N, Alobead ZA, Rasheed Z |title=Molecular Genetic of Atopic dermatitis: An Update |journal=Int J Health Sci (Qassim) |volume=10 |issue=1 |pages=96–120 |date=January 2016 |pmid=27004062 |pmc=4791162 |doi= |url=}}</ref> | |||
|} | |||
==Associated Conditions== | |||
'''Conditions associated with atopic dermatitis:''' | |||
* Atopic triad | |||
** Atopic dermatitis | |||
** [[Allergic rhinitis]] | |||
** [[Asthma]] | |||
* Food-induced urticaria/anaphylaxis | |||
* [[Ichthyosis vulgaris]] | |||
* Ocular comorbidities | |||
** [[Atopic keratoconjunctivitis]] | |||
** [[Vernal keratoconjunctivitis]] | |||
* [[Wiskott-Aldrich syndrome]] | |||
** [[Thrombocytopenia]] | |||
** Eczema (atopic dermatitis) | |||
** Recurrent infections | |||
* [[Hyper-IgE syndrome]]: | |||
** Eczema (atopic dermatitis) | |||
** High serum [[IgE]] | |||
** Recurrent cold abscesses | |||
* [[Anemia]] | |||
* Psychiatric disorders | |||
** [[Depression]] | |||
** [[Anxiety]] | |||
** [[Suicidal|Suicid]]<nowiki/>al ideations | |||
** [[Attention deficit hyperactivity disorder]] | |||
* [[Angina pectoris]] | |||
==Gross Pathology== | |||
On [[gross pathology]], characteristic findings of atopic dermatitis include:<ref name="MihmSoter19762">{{cite journal|last1=Mihm|first1=Martin C|last2=Soter|first2=Nicholas A|last3=Dvorak|first3=Harold F|last4=Austen|first4=K Frank|title=The Structure Of Normal Skin And The Morphology Of Atopic Eczema|journal=Journal of Investigative Dermatology|volume=67|issue=3|year=1976|pages=305–312|issn=0022202X|doi=10.1111/1523-1747.ep12514346}}</ref> | |||
* '''Acute atopic dermatitis''': | |||
** [[Erythema]] | |||
** [[Edema]] | |||
** Vesiculation with oozing | |||
* '''Chronic atopic dermatitis:''' | |||
** Lichenified plaques | |||
** Prominent skin markings | |||
==Microscopic Pathology== | |||
On microscopic [[histopathological]] analysis, characteristic findings of atopic dermatitis include:<ref name="MihmSoter19763">{{cite journal|last1=Mihm|first1=Martin C|last2=Soter|first2=Nicholas A|last3=Dvorak|first3=Harold F|last4=Austen|first4=K Frank|title=The Structure Of Normal Skin And The Morphology Of Atopic Eczema|journal=Journal of Investigative Dermatology|volume=67|issue=3|year=1976|pages=305–312|issn=0022202X|doi=10.1111/1523-1747.ep12514346}}</ref> | |||
* '''Acute vesicular lesions''': | |||
** Epidermal psoriasiform [[hyperplasia]] | |||
** Marked intercellular [[edema]] with spongiotic vesiculation | |||
** Marked perivenular infiltrate | |||
** Epidermal infiltrate, consisting predominately of a lymphohistiocytic infiltrate in the dermis | |||
* '''Chronic lichenified plaque''': | |||
** [[Hyperkeratosis]] | |||
** Psoriasiform hyperplasia | |||
** Dyskeratosis | |||
** Marked thickening of the papillary dermis | |||
** Minimal intercellular edema | |||
==References== | |||
{{Reflist|2}} | |||
{{WH}} | |||
{{WS}} | |||
[[Category: (name of the system)]] | |||
==References== | ==References== |
Revision as of 18:03, 1 November 2018
Idiopathic thrombocytopenic purpura Microchapters |
Differentiating Idiopathic thrombocytopenic purpura from other Diseases |
---|
Diagnosis |
Treatment |
Case Studies |
Idiopathic thrombocytopenic purpura pathophysiology On the Web |
American Roentgen Ray Society Images of Idiopathic thrombocytopenic purpura pathophysiology |
Idiopathic thrombocytopenic purpura pathophysiology in the news |
Blogs on Idiopathic thrombocytopenic purpura pathophysiology |
Directions to Hospitals Treating Idiopathic thrombocytopenic purpura |
Risk calculators and risk factors for Idiopathic thrombocytopenic purpura pathophysiology |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]
Overview
Atopic dermatitis is a chronic inflammatory skin disorder with an immunologic background and occurs in patients with a personal or family history of atopy (i.e. asthma or allergic rhinitis). It is caused by either skin barrier dysfunction or immune dysregulation of the adaptive and innate immune response leading to an enhanced IgE-mediated, systemic Th2 response. The skin barrier is invaded by exogenous substances, including allergens, irritants and microbes; and the tightly packed structure of the stratum corneum is further compromised. Systemically, a dysfunctional innate and adaptive immune response causes further damage to the epidermis.
Pathophysiology
Physiology
The normal physiology of atopic dermatitis can be understood as follows:
Epidermal barrier function:
- Epidermis: It directly interfaces with the environment and acts as the 1st line of defense. It is primarily dependent on the structure and composition of the most outermost layer of the skin, i.e. stratum corneum. It protects the body from irritants, allergens, microbes, and pathogens from invading the skin as well as preventing the excess water loss.[1] Epidermis consists of:
- Tightly packed corneocytes layers in the stratum corneum
- Intercellular lipid bilayers
- Corneocytes layers embedded in the extracellular matrix derived from lipid lamellae
- Natural moisturising factors (NMF), maintaining the water retention in the stratum corneum
- Antimicrobial peptides
- Filaggrin proteins: It is encoded by filaggrin gene FLG on chromosome 1q21 (contains the genes of the epidermal differentiation complex (EDC)) and is the main component required to form corneocytes in the stratum corneum.[2]
- Pro-filaggrin is required for the formation of dense cytoplasmic granules, which along with other proteins forms the corneocytes that acts as a primary unit for the barrier function of the skin.
- Pro-filaggrin undergoes extensive phosphorylation and dephosphorylation, to produce filaggrin monomers to interact and aggregate with the keratin filaments and permits extensive crosslinking, to form a highly insoluble keratin matrix.[3]
- The degraded products of filaggrin protein are one of the major components of natural moisturising factors (NMF), which prevents excess water loss from the stratum corneum.
- The degraded products of filaggrin protein also maintain the acidic pH of the stratum corneum, required to regulate the activity of enzymes.
- Proteins related to tight junctions: These transmembrane proteins are present in the stratum granulosum of the epidermis and compose together to form tight junctions which includes claudin-1, occludin, junctional adhesion molecule.[4]
- Other proteins: Filaggrin-2, corneodesmosin, desmoglein-1, desmocollin-1, transglutaminase-3 are also part of skin barrier related proteins.[5]
Immune response:
- Cutaneous immune response: It acts as the first-line barrier and constitutes the rapid response mechanism to the invading allergen or pathogen.[6] It recognizes the microbes through receptors known as pattern recognition receptors (PRRs). The cutaneous immune response includes the following 4 elements:[7]
- Physical: Stratum corneum and the tight junctions in stratum granulosum forms the physical barrier. The maintenance and repair of epithelial barriers are mediated through the activation of PRRs by the innate immune system.[8]
- Chemical: Chemical constitutes antimicrobial proteins including antimicrobial peptides (AMPs), S100 proteins, cytokines as well as chemokines, innate lymphoid cells group 2 (ILC-2), toll-like receptors (TLRs), keratinocytes, filaggrin degraded products, and neutrophils.[9][10]
- Microbiome: Microbiome consists of skin-resident normal microbial flora including bacteria, fungi, and viruses. It provides protection against invading microbes and pathogens, and modulates the balance between inflammation and immune responses.[11]
- Immunological: Immune response includes both non-specific and immediate response (innate immunity) and highly specific and late response (adaptive immunity).
- Adaptive Immune response:[6]
- The character and magnitude of the adaptive immune system is determined by the innate immune response by interactions with the epidermal elements and activation of TLRs.[12]
- Thymic stromal lymphopoietin:
- Thymic stromal lymphopoietin (TSLP) is considered as a master switch for allergic inflammation, and is highly expressed by epithelial cells and epidermal keratinocytes.[13][14]
- It is an IL-7-like cytokine, which stimulates the differentiation of naïve T helper cells into inflammatory Th2 cells.[15]
Pathogenesis
- Common cause of ITP is autoimmune .[16]
- Auto antibodies against platelets is detected in approximately 60% of cases.
- These antibodies are against platelet membrane glycoproteins IIb-IIIa or Ib-IX, and IgG type.[17]
- Other cause of ITP is due to chronic infections such as HIV, hepatitis C and H. Pylori. It,s due to molecular mimicry, antibody is formed against the infection and this cross-reacts with platelets. Autoantibodies in ITP react with platelet IIb/IIIa glycoprotein, less commonly with GPIb/IX. Lymphocytes in the spleen make the antiplatelet antibody; that,s why splenectomy works so well. There is a correlation between a platelet's short survival and high turnover rate and the subsequent excellent response to splenectomy.
- Platelet kinetic studies show that platelet production is normal or reduced rather than increased in about two thirds of ITP patients.
- autoantibodies from patients with ITP inhibit megakaryocyte growth in vitro.
- IgG from ITP-plasma inhibits megakaryocyte production.
- Ultrastructural studies of the bone marrow in ITP show increased signs of megakaryocyte apoptosis and reduced platelet shedding.
- Recent studies suggests that the stimulus for autoantibody production in ITP is due to abnormal T helper cells reacting with platelet antigens on the surface of antigen presenting cells.[18] This important finding suggests that therapies directed towards T cells may be effective in treating ITP.[19]
It is understood that atopic dermatitis is the result of either skin barrier dysfunction or by immune dysregulation.[20]
Epidermal barrier dysfunction (outside-in hypothesis):[21]
- The major factors causing abnormal skin barrier include loss-of-function mutations in the filaggrin gene (FLG) resulting in:[22][23][24]
- Filaggrin protein deficiency[25]
- Tight junction abnormalities[26]
- More alkaline surface pH[27]
- Microbial colonization
- Altered protease activity in the stratum corneum[28]
- Skin barrier abnormalities lead to the increased permeability of the epidermis.
- This leads to entry of antigens or pathogens resulting in microbial colonization, most notably by staphylococcus aureus and herpes simplex virus (HSV).
- These sequence of events results in the production of inflammatory cytokines and impaired production of antimicrobial peptides.[29]
- Skin barrier abnormalities also leads to increased trans-epidermal water loss, and decreased levels of ceramides and water binding.[30]
- Severe atopic dermatitis has been associated with higher levels of trans-epidermal water loss.[31]
Immune dysregulation (inside-out’ hypothesis):[32]
- Innate immune response:
- Pathogens or tissue damage activate pattern recognition receptors including toll-like receptors (TLRs), which further induces a release of inflammatory mediators, including AMPs, cytokines, and chemokines.[33]
- Defective cutaneous innate immune-mediated epidermal barrier repair and maintenance may alter skin-resident normal microbial flora and lead to severe inflammation as demonstrated with atopic dermatitis patients colonized with staphylococcus aureus.[34]
- In intact skin barrier, antimicrobial peptides (AMPs) are regulated by cytokines, IL-17, and IL- 22, which are secreted by Th17 and Th22 cells. This effect is suppressed in patients with atopic dermatitis.[35]
- Adaptive immune response:
- Increased allergen penetration through the damaged epidermis leading to a Th2-type milieu is thought to explain the critical link between the barrier defect of atopic dermatitis patients with FLG mutations and Th2 polarization.[36]
- Enhanced expression of Th2, Th17, and Th22 cytokines, characterize the acute initiation of atopic dermatitis lesions.[37]
- Epidermal barrier function is regulated through Th2 and Th22 cytokines (IL-4, IL-13, IL-31, and IL-22) by:[38]
- Stimulating epidermal hyperplasia
- Inhibiting the expression of terminal keratinocyte differentiation genes (eg, FLG, loricrin, involucrin)
- Suppressing the production of AMPs
- Thymic stromal lymphopoietin:
- Defective skin barrier and enhanced epidermal protease activity, which is reported in atopic dermatitis, promote TSLP production and Th2 response, leading to atopic dermatitis-like inflammation.[39]
- TSLP polymorphisms have been linked to the severity of atopic dermatitis.
- TSLP genetic variants are associated with atopic dermatitis and eczema herpeticum.[40]
- In patients with defective skin barrier due to FLG mutations, TSLP genetic variants are associated with reduced probability of having persistent atopic dermatitis.[41]
Genetics
Recent studies have established a strong genetic association of atopic dermatitis. Twin studies have indicated high heritability of atopic dermatitis with a concordance rate of 72–86 % for monozygotic twins compared with 21–23 % for dizygotic twins.[42]
Genes involved in the pathogenesis of atopic dermatitis include:[43]
Genes involved in the pathogenesis of atopic dermatitis | ||
---|---|---|
Filaggrin Gene mutation |
| |
SPINK5 and LEKTI gene |
| |
MHC (or HLA) genes |
| |
Innate Immune system genes: |
| |
Adaptive immune system genes | Cytokines and related genes: | |
Chemokines and related genes: |
| |
Drug-metabolizing genes |
| |
Other genes |
| |
Adapted from Molecular Genetic of Atopic dermatitis: An Update[50] |
Associated Conditions
Conditions associated with atopic dermatitis:
- Atopic triad
- Atopic dermatitis
- Allergic rhinitis
- Asthma
- Food-induced urticaria/anaphylaxis
- Ichthyosis vulgaris
- Ocular comorbidities
- Wiskott-Aldrich syndrome
- Thrombocytopenia
- Eczema (atopic dermatitis)
- Recurrent infections
- Hyper-IgE syndrome:
- Eczema (atopic dermatitis)
- High serum IgE
- Recurrent cold abscesses
- Anemia
- Psychiatric disorders
- Angina pectoris
Gross Pathology
On gross pathology, characteristic findings of atopic dermatitis include:[51]
- Acute atopic dermatitis:
- Chronic atopic dermatitis:
- Lichenified plaques
- Prominent skin markings
Microscopic Pathology
On microscopic histopathological analysis, characteristic findings of atopic dermatitis include:[52]
- Acute vesicular lesions:
- Epidermal psoriasiform hyperplasia
- Marked intercellular edema with spongiotic vesiculation
- Marked perivenular infiltrate
- Epidermal infiltrate, consisting predominately of a lymphohistiocytic infiltrate in the dermis
- Chronic lichenified plaque:
- Hyperkeratosis
- Psoriasiform hyperplasia
- Dyskeratosis
- Marked thickening of the papillary dermis
- Minimal intercellular edema
References
- ↑ Elias PM, Wakefield JS (October 2014). "Mechanisms of abnormal lamellar body secretion and the dysfunctional skin barrier in patients with atopic dermatitis". J. Allergy Clin. Immunol. 134 (4): 781–791.e1. doi:10.1016/j.jaci.2014.05.048. PMC 4186911. PMID 25131691.
- ↑ Sandilands A, Sutherland C, Irvine AD, McLean WH (May 2009). "Filaggrin in the frontline: role in skin barrier function and disease". J. Cell. Sci. 122 (Pt 9): 1285–94. doi:10.1242/jcs.033969. PMC 2721001. PMID 19386895.
- ↑ Sandilands A, Sutherland C, Irvine AD, McLean WH (May 2009). "Filaggrin in the frontline: role in skin barrier function and disease". J. Cell. Sci. 122 (Pt 9): 1285–94. doi:10.1242/jcs.033969. PMC 2721001. PMID 19386895.
- ↑ De Benedetto A, Rafaels NM, McGirt LY, Ivanov AI, Georas SN, Cheadle C, Berger AE, Zhang K, Vidyasagar S, Yoshida T, Boguniewicz M, Hata T, Schneider LC, Hanifin JM, Gallo RL, Novak N, Weidinger S, Beaty TH, Leung DY, Barnes KC, Beck LA (March 2011). "Tight junction defects in patients with atopic dermatitis". J. Allergy Clin. Immunol. 127 (3): 773–86.e1–7. doi:10.1016/j.jaci.2010.10.018. PMC 3049863. PMID 21163515.
- ↑ Broccardo CJ, Mahaffey S, Schwarz J, Wruck L, David G, Schlievert PM, Reisdorph NA, Leung DY (January 2011). "Comparative proteomic profiling of patients with atopic dermatitis based on history of eczema herpeticum infection and Staphylococcus aureus colonization". J. Allergy Clin. Immunol. 127 (1): 186–93, 193.e1–11. doi:10.1016/j.jaci.2010.10.033. PMC 3059191. PMID 21211653.
- ↑ 6.0 6.1 Barnes KC (January 2010). "An update on the genetics of atopic dermatitis: scratching the surface in 2009". J. Allergy Clin. Immunol. 125 (1): 16–29.e1–11, quiz 30–1. doi:10.1016/j.jaci.2009.11.008. PMC 2874322. PMID 20109730.
- ↑ Kuo IH, Yoshida T, De Benedetto A, Beck LA (February 2013). "The cutaneous innate immune response in patients with atopic dermatitis". J. Allergy Clin. Immunol. 131 (2): 266–78. doi:10.1016/j.jaci.2012.12.1563. PMID 23374259.
- ↑ Cario E, Gerken G, Podolsky DK (July 2004). "Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C". Gastroenterology. 127 (1): 224–38. PMID 15236188.
- ↑ Kuo IH, Yoshida T, De Benedetto A, Beck LA (February 2013). "The cutaneous innate immune response in patients with atopic dermatitis". J. Allergy Clin. Immunol. 131 (2): 266–78. doi:10.1016/j.jaci.2012.12.1563. PMID 23374259.
- ↑ Kuo IH, Carpenter-Mendini A, Yoshida T, McGirt LY, Ivanov AI, Barnes KC, Gallo RL, Borkowski AW, Yamasaki K, Leung DY, Georas SN, De Benedetto A, Beck LA (April 2013). "Activation of epidermal toll-like receptor 2 enhances tight junction function: implications for atopic dermatitis and skin barrier repair". J. Invest. Dermatol. 133 (4): 988–98. doi:10.1038/jid.2012.437. PMC 3600383. PMID 23223142.
- ↑ Lynch SV, Pedersen O (December 2016). "The Human Intestinal Microbiome in Health and Disease". N. Engl. J. Med. 375 (24): 2369–2379. doi:10.1056/NEJMra1600266. PMID 27974040.
- ↑ De Benedetto A, Agnihothri R, McGirt LY, Bankova LG, Beck LA (January 2009). "Atopic dermatitis: a disease caused by innate immune defects?". J. Invest. Dermatol. 129 (1): 14–30. doi:10.1038/jid.2008.259. PMID 19078985.
- ↑ Liu YJ (February 2006). "Thymic stromal lymphopoietin: master switch for allergic inflammation". J. Exp. Med. 203 (2): 269–73. doi:10.1084/jem.20051745. PMC 2118215. PMID 16432252.
- ↑ Takai T (March 2012). "TSLP expression: cellular sources, triggers, and regulatory mechanisms". Allergol Int. 61 (1): 3–17. doi:10.2332/allergolint.11-RAI-0395. PMID 22270071.
- ↑ Liu YJ (February 2006). "Thymic stromal lymphopoietin: master switch for allergic inflammation". J. Exp. Med. 203 (2): 269–73. doi:10.1084/jem.20051745. PMC 2118215. PMID 16432252.
- ↑ Coopamah M, Garvey M, Freedman J, Semple J (2003). "Cellular immune mechanisms in autoimmune thrombocytopenic purpura: An update". Transfus Med Rev. 17 (1): 69–80. PMID 12522773.
- ↑ Schwartz RS (2007). "Immune thrombocytopenic purpura--from agony to agonist". N. Engl. J. Med. 357 (22): 2299–301. doi:10.1056/NEJMe0707126. PMID 18046034.
- ↑ Semple JW, Freedman J (1991). "Increased antiplatelet T helper lymphocyte reactivity in patients with autoimmune thrombocytopenia". Blood. 78 (10): 2619–25. PMID 1840468.
- ↑ Zufferey A, Kapur R, Semple JW (February 2017). "Pathogenesis and Therapeutic Mechanisms in Immune Thrombocytopenia (ITP)". J Clin Med. 6 (2). doi:10.3390/jcm6020016. PMC 5332920. PMID 28208757.
- ↑ Boguniewicz M, Leung DY (July 2011). "Atopic dermatitis: a disease of altered skin barrier and immune dysregulation". Immunol. Rev. 242 (1): 233–46. doi:10.1111/j.1600-065X.2011.01027.x. PMC 3122139. PMID 21682749.
- ↑ Elias PM, Hatano Y, Williams ML (June 2008). "Basis for the barrier abnormality in atopic dermatitis: outside-inside-outside pathogenic mechanisms". J. Allergy Clin. Immunol. 121 (6): 1337–43. doi:10.1016/j.jaci.2008.01.022. PMC 2706021. PMID 18329087.
- ↑ Morizane S, Yamasaki K, Kajita A, Ikeda K, Zhan M, Aoyama Y, Gallo RL, Iwatsuki K (July 2012). "TH2 cytokines increase kallikrein 7 expression and function in patients with atopic dermatitis". J. Allergy Clin. Immunol. 130 (1): 259–61.e1. doi:10.1016/j.jaci.2012.03.006. PMC 3387356. PMID 22521249.
- ↑ Margolis DJ, Apter AJ, Gupta J, Hoffstad O, Papadopoulos M, Campbell LE, Sandilands A, McLean WH, Rebbeck TR, Mitra N (October 2012). "The persistence of atopic dermatitis and filaggrin (FLG) mutations in a US longitudinal cohort". J. Allergy Clin. Immunol. 130 (4): 912–7. doi:10.1016/j.jaci.2012.07.008. PMC 3462287. PMID 22951058.
- ↑ McAleer MA, Irvine AD (February 2013). "The multifunctional role of filaggrin in allergic skin disease". J. Allergy Clin. Immunol. 131 (2): 280–91. doi:10.1016/j.jaci.2012.12.668. PMID 23374260.
- ↑ Howell MD, Kim BE, Gao P, Grant AV, Boguniewicz M, DeBenedetto A, Schneider L, Beck LA, Barnes KC, Leung DY (September 2009). "Cytokine modulation of atopic dermatitis filaggrin skin expression". J. Allergy Clin. Immunol. 124 (3 Suppl 2): R7–R12. doi:10.1016/j.jaci.2009.07.012. PMID 19720210.
- ↑ De Benedetto A, Rafaels NM, McGirt LY, Ivanov AI, Georas SN, Cheadle C, Berger AE, Zhang K, Vidyasagar S, Yoshida T, Boguniewicz M, Hata T, Schneider LC, Hanifin JM, Gallo RL, Novak N, Weidinger S, Beaty TH, Leung DY, Barnes KC, Beck LA (March 2011). "Tight junction defects in patients with atopic dermatitis". J. Allergy Clin. Immunol. 127 (3): 773–86.e1–7. doi:10.1016/j.jaci.2010.10.018. PMC 3049863. PMID 21163515.
- ↑ Elias PM, Hatano Y, Williams ML (June 2008). "Basis for the barrier abnormality in atopic dermatitis: outside-inside-outside pathogenic mechanisms". J. Allergy Clin. Immunol. 121 (6): 1337–43. doi:10.1016/j.jaci.2008.01.022. PMC 2706021. PMID 18329087.
- ↑ Cork MJ, Robinson DA, Vasilopoulos Y, Ferguson A, Moustafa M, MacGowan A, Duff GW, Ward SJ, Tazi-Ahnini R (July 2006). "New perspectives on epidermal barrier dysfunction in atopic dermatitis: gene-environment interactions". J. Allergy Clin. Immunol. 118 (1): 3–21, quiz 22–3. doi:10.1016/j.jaci.2006.04.042. PMID 16815133.
- ↑ Leung DY (June 2013). "New insights into atopic dermatitis: role of skin barrier and immune dysregulation". Allergol Int. 62 (2): 151–61. doi:10.2332/allergolint.13-RAI-0564. PMID 23712284.
- ↑ Cork MJ, Danby SG, Vasilopoulos Y, Hadgraft J, Lane ME, Moustafa M; et al. (2009). "Epidermal barrier dysfunction in atopic dermatitis". J Invest Dermatol. 129 (8): 1892–908. doi:10.1038/jid.2009.133. PMID 19494826.
- ↑ Flohr C, England K, Radulovic S, McLean WH, Campbel LE, Barker J, Perkin M, Lack G (December 2010). "Filaggrin loss-of-function mutations are associated with early-onset eczema, eczema severity and transepidermal water loss at 3 months of age". Br. J. Dermatol. 163 (6): 1333–6. PMID 21137118.
- ↑ Elias PM, Hatano Y, Williams ML (June 2008). "Basis for the barrier abnormality in atopic dermatitis: outside-inside-outside pathogenic mechanisms". J. Allergy Clin. Immunol. 121 (6): 1337–43. doi:10.1016/j.jaci.2008.01.022. PMC 2706021. PMID 18329087.
- ↑ Kuo IH, Carpenter-Mendini A, Yoshida T, McGirt LY, Ivanov AI, Barnes KC, Gallo RL, Borkowski AW, Yamasaki K, Leung DY, Georas SN, De Benedetto A, Beck LA (April 2013). "Activation of epidermal toll-like receptor 2 enhances tight junction function: implications for atopic dermatitis and skin barrier repair". J. Invest. Dermatol. 133 (4): 988–98. doi:10.1038/jid.2012.437. PMC 3600383. PMID 23223142.
- ↑ Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, Nomicos E, Polley EC, Komarow HD, Murray PR, Turner ML, Segre JA (May 2012). "Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis". Genome Res. 22 (5): 850–9. doi:10.1101/gr.131029.111. PMC 3337431. PMID 22310478.
- ↑ Macias ES, Pereira FA, Rietkerk W, Safai B (March 2011). "Superantigens in dermatology". J. Am. Acad. Dermatol. 64 (3): 455–72, quiz 473–4. doi:10.1016/j.jaad.2010.03.044. PMID 21315950.
- ↑ Boguniewicz M, Leung DY (July 2011). "Atopic dermatitis: a disease of altered skin barrier and immune dysregulation". Immunol. Rev. 242 (1): 233–46. doi:10.1111/j.1600-065X.2011.01027.x. PMC 3122139. PMID 21682749.
- ↑ Leung DY, Guttman-Yassky E (October 2014). "Deciphering the complexities of atopic dermatitis: shifting paradigms in treatment approaches". J. Allergy Clin. Immunol. 134 (4): 769–79. doi:10.1016/j.jaci.2014.08.008. PMC 4186710. PMID 25282559.
- ↑ Leung DY, Guttman-Yassky E (October 2014). "Deciphering the complexities of atopic dermatitis: shifting paradigms in treatment approaches". J. Allergy Clin. Immunol. 134 (4): 769–79. doi:10.1016/j.jaci.2014.08.008. PMC 4186710. PMID 25282559.
- ↑ Takai T (March 2012). "TSLP expression: cellular sources, triggers, and regulatory mechanisms". Allergol Int. 61 (1): 3–17. doi:10.2332/allergolint.11-RAI-0395. PMID 22270071.
- ↑ Gao PS, Rafaels NM, Mu D, Hand T, Murray T, Boguniewicz M, Hata T, Schneider L, Hanifin JM, Gallo RL, Gao L, Beaty TH, Beck LA, Leung DY, Barnes KC (June 2010). "Genetic variants in thymic stromal lymphopoietin are associated with atopic dermatitis and eczema herpeticum". J. Allergy Clin. Immunol. 125 (6): 1403–1407.e4. doi:10.1016/j.jaci.2010.03.016. PMC 2925504. PMID 20466416.
- ↑ Margolis DJ, Kim B, Apter AJ, Gupta J, Hoffstad O, Papadopoulos M, Mitra N (March 2014). "Thymic stromal lymphopoietin variation, filaggrin loss of function, and the persistence of atopic dermatitis". JAMA Dermatol. 150 (3): 254–9. doi:10.1001/jamadermatol.2013.7954. PMC 4414492. PMID 24401911.
- ↑ Al-Shobaili HA, Ahmed AA, Alnomair N, Alobead ZA, Rasheed Z (January 2016). "Molecular Genetic of Atopic dermatitis: An Update". Int J Health Sci (Qassim). 10 (1): 96–120. PMC 4791162. PMID 27004062.
- ↑ Al-Shobaili HA, Ahmed AA, Alnomair N, Alobead ZA, Rasheed Z (January 2016). "Molecular Genetic of Atopic dermatitis: An Update". Int J Health Sci (Qassim). 10 (1): 96–120. PMC 4791162. PMID 27004062.
- ↑ Irvine AD, McLean WH, Leung DY (October 2011). "Filaggrin mutations associated with skin and allergic diseases". N. Engl. J. Med. 365 (14): 1315–27. doi:10.1056/NEJMra1011040. PMID 21991953.
- ↑ Liao H, Waters AJ, Goudie DR, Aitken DA, Graham G, Smith FJ, Lewis-Jones S, McLean WH (December 2007). "Filaggrin mutations are genetic modifying factors exacerbating X-linked ichthyosis". J. Invest. Dermatol. 127 (12): 2795–8. doi:10.1038/sj.jid.5700971. PMID 17657246.
- ↑ Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP, Goudie DR, Sandilands A, Campbell LE, Smith FJ, O'Regan GM, Watson RM, Cecil JE, Bale SJ, Compton JG, DiGiovanna JJ, Fleckman P, Lewis-Jones S, Arseculeratne G, Sergeant A, Munro CS, El Houate B, McElreavey K, Halkjaer LB, Bisgaard H, Mukhopadhyay S, McLean WH (April 2006). "Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis". Nat. Genet. 38 (4): 441–6. doi:10.1038/ng1767. PMID 16550169.
- ↑ Rupnik H, Rijavec M, Korošec P (February 2015). "Filaggrin loss-of-function mutations are not associated with atopic dermatitis that develops in late childhood or adulthood". Br. J. Dermatol. 172 (2): 455–61. doi:10.1111/bjd.13477. PMID 25314673.
- ↑ Al-Shobaili HA, Ahmed AA, Alnomair N, Alobead ZA, Rasheed Z (January 2016). "Molecular Genetic of Atopic dermatitis: An Update". Int J Health Sci (Qassim). 10 (1): 96–120. PMC 4791162. PMID 27004062.
- ↑ Cork MJ, Robinson DA, Vasilopoulos Y, Ferguson A, Moustafa M, MacGowan A, Duff GW, Ward SJ, Tazi-Ahnini R (July 2006). "New perspectives on epidermal barrier dysfunction in atopic dermatitis: gene-environment interactions". J. Allergy Clin. Immunol. 118 (1): 3–21, quiz 22–3. doi:10.1016/j.jaci.2006.04.042. PMID 16815133.
- ↑ Al-Shobaili HA, Ahmed AA, Alnomair N, Alobead ZA, Rasheed Z (January 2016). "Molecular Genetic of Atopic dermatitis: An Update". Int J Health Sci (Qassim). 10 (1): 96–120. PMC 4791162. PMID 27004062.
- ↑ Mihm, Martin C; Soter, Nicholas A; Dvorak, Harold F; Austen, K Frank (1976). "The Structure Of Normal Skin And The Morphology Of Atopic Eczema". Journal of Investigative Dermatology. 67 (3): 305–312. doi:10.1111/1523-1747.ep12514346. ISSN 0022-202X.
- ↑ Mihm, Martin C; Soter, Nicholas A; Dvorak, Harold F; Austen, K Frank (1976). "The Structure Of Normal Skin And The Morphology Of Atopic Eczema". Journal of Investigative Dermatology. 67 (3): 305–312. doi:10.1111/1523-1747.ep12514346. ISSN 0022-202X.