Wiskott-Aldrich syndrome: Difference between revisions

Jump to navigation Jump to search
Line 72: Line 72:
==Screening==
==Screening==
*[[Flow cytometry]]:
*[[Flow cytometry]]:
** Anti-WASp antibody can be used to detect presence or absence of WAS protein. However, [[flow cytometry]] may not detect expression of mutated,  reduced or poor WASP expression.<ref name="pmid29729304">{{cite journal |vauthors=Chiang SCC, Vergamini SM, Husami A, Neumeier L, Quinn K, Ellerhorst T, Sheppard L, Gifford C, Buchbinder D, Joshi A, Ifversen M, Kleiner GI, Bussel JB, Chandrakasan S, Pesek RD, Pozos TC, Rose MJ, Scurlock AM, Zhang K, Bryceson YT, Bleesing J, Marsh RA |title=Screening for Wiskott-Aldrich syndrome by flow cytometry |journal=J. Allergy Clin. Immunol. |volume=142 |issue=1 |pages=333–335.e8 |date=July 2018 |pmid=29729304 |doi=10.1016/j.jaci.2018.04.017 |url=}}</ref>
** Anti-WASp antibody can be used to detect presence or absence of WAS protein. However, [[flow cytometry]] may not detect expression of mutated,  reduced or poor WASp.<ref name="pmid29729304">{{cite journal |vauthors=Chiang SCC, Vergamini SM, Husami A, Neumeier L, Quinn K, Ellerhorst T, Sheppard L, Gifford C, Buchbinder D, Joshi A, Ifversen M, Kleiner GI, Bussel JB, Chandrakasan S, Pesek RD, Pozos TC, Rose MJ, Scurlock AM, Zhang K, Bryceson YT, Bleesing J, Marsh RA |title=Screening for Wiskott-Aldrich syndrome by flow cytometry |journal=J. Allergy Clin. Immunol. |volume=142 |issue=1 |pages=333–335.e8 |date=July 2018 |pmid=29729304 |doi=10.1016/j.jaci.2018.04.017 |url=}}</ref>
* Identification of carriers: Known [[female]] carriers can be identified by using [[DNA]] mutation analysis involving [[WAS gene]].
* Identification of carriers: Known [[female]] carriers can be identified by using [[DNA]] mutation analysis of [[WAS gene]].
* Prenatal diagnosis: DNA analysis from [[chorionic villus sampling]] can be performed.<ref name="pmid10073904">{{cite journal |vauthors=Giliani S, Fiorini M, Mella P, Candotti F, Schumacher RF, Wengler GS, Lalatta F, Fasth A, Badolato R, Ugazio AG, Albertini A, Notarangelo LD |title=Prenatal molecular diagnosis of Wiskott-Aldrich syndrome by direct mutation analysis |journal=Prenat. Diagn. |volume=19 |issue=1 |pages=36–40 |date=January 1999 |pmid=10073904 |doi= |url=}}</ref>
* Prenatal diagnosis: DNA analysis from [[chorionic villus sampling]] can be performed.<ref name="pmid10073904">{{cite journal |vauthors=Giliani S, Fiorini M, Mella P, Candotti F, Schumacher RF, Wengler GS, Lalatta F, Fasth A, Badolato R, Ugazio AG, Albertini A, Notarangelo LD |title=Prenatal molecular diagnosis of Wiskott-Aldrich syndrome by direct mutation analysis |journal=Prenat. Diagn. |volume=19 |issue=1 |pages=36–40 |date=January 1999 |pmid=10073904 |doi= |url=}}</ref>



Revision as of 12:58, 23 August 2018

WikiDoc Resources for Wiskott-Aldrich syndrome

Articles

Most recent articles on Wiskott-Aldrich syndrome

Most cited articles on Wiskott-Aldrich syndrome

Review articles on Wiskott-Aldrich syndrome

Articles on Wiskott-Aldrich syndrome in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Wiskott-Aldrich syndrome

Images of Wiskott-Aldrich syndrome

Photos of Wiskott-Aldrich syndrome

Podcasts & MP3s on Wiskott-Aldrich syndrome

Videos on Wiskott-Aldrich syndrome

Evidence Based Medicine

Cochrane Collaboration on Wiskott-Aldrich syndrome

Bandolier on Wiskott-Aldrich syndrome

TRIP on Wiskott-Aldrich syndrome

Clinical Trials

Ongoing Trials on Wiskott-Aldrich syndrome at Clinical Trials.gov

Trial results on Wiskott-Aldrich syndrome

Clinical Trials on Wiskott-Aldrich syndrome at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Wiskott-Aldrich syndrome

NICE Guidance on Wiskott-Aldrich syndrome

NHS PRODIGY Guidance

FDA on Wiskott-Aldrich syndrome

CDC on Wiskott-Aldrich syndrome

Books

Books on Wiskott-Aldrich syndrome

News

Wiskott-Aldrich syndrome in the news

Be alerted to news on Wiskott-Aldrich syndrome

News trends on Wiskott-Aldrich syndrome

Commentary

Blogs on Wiskott-Aldrich syndrome

Definitions

Definitions of Wiskott-Aldrich syndrome

Patient Resources / Community

Patient resources on Wiskott-Aldrich syndrome

Discussion groups on Wiskott-Aldrich syndrome

Patient Handouts on Wiskott-Aldrich syndrome

Directions to Hospitals Treating Wiskott-Aldrich syndrome

Risk calculators and risk factors for Wiskott-Aldrich syndrome

Healthcare Provider Resources

Symptoms of Wiskott-Aldrich syndrome

Causes & Risk Factors for Wiskott-Aldrich syndrome

Diagnostic studies for Wiskott-Aldrich syndrome

Treatment of Wiskott-Aldrich syndrome

Continuing Medical Education (CME)

CME Programs on Wiskott-Aldrich syndrome

International

Wiskott-Aldrich syndrome en Espanol

Wiskott-Aldrich syndrome en Francais

Business

Wiskott-Aldrich syndrome in the Marketplace

Patents on Wiskott-Aldrich syndrome

Experimental / Informatics

List of terms related to Wiskott-Aldrich syndrome

Wiskott-Aldrich syndrome
ICD-10 D82.0
ICD-9 279.12
OMIM 301000
DiseasesDB 14176
MeSH D014923

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Chandrakala Yannam, MD [2]

Associate Editor-In-Chief: Cafer Zorkun, M.D., Ph.D. [3]

Synonyms and keywords: Aldrich syndrome

Patient Informtion

Overview

Wiskott-Aldrich syndrome (WAS) is a rare X-linked recessive disease characterized by eczema, thrombocytopenia (low platelet counts), immune deficiency, and bloody diarrhea (due to the low platelet counts). It is also sometimes called the eczema-thrombocytopenia-immunodeficiency syndrome in keeping with Aldrich's original description in 1954.[1] The WAS-related disorders of X-linked thrombocytopenia (XLT) and X-linked congenital neutropenia (XLN) may present similar but less severe symptoms and are caused by mutations of the same gene.

Historical Perspective

The syndrome is named after Dr Robert Anderson Aldrich, an American pediatrician who described the disease in a family of Dutch-Americans in 1954, and Dr Alfred Wiskott, a German pediatrician who first noticed the syndrome in 1937.[2] Wiskott described three brothers with a similar disease, whose sisters were unaffected. In 2006 a German research group analysed family members of Wiskott's three cases, and surmised that they probably shared a novel frameshift mutation of the first exon of the WAS gene.[3]

Classification

Jin et al (2004) employ a numerical grading of severity:[4]

  • 0.5: intermittent thrombopenia
  • 1.0: thrombopenia and small platelets
  • 2.0: thrombopenia and normally responsive eczema or occasional upper respiratory tract infections.
  • 2.5: thrombopenia and therapy-responsive but severe eczema or airway infections requiring antibiotics
  • 3.0: both eczema and airway infections requiring antibiotics
  • 4.0: eczema continuously requiring therapy and/or severe or life threatening infections
  • 5.0: autoimmune disease or malignancy in an XLT/WAS patient.

Pathophysiology

In Wiskott–Aldrich syndrome, the platelets are small and do not function properly. They are removed by the spleen, which leads to low platelet counts.

Wiskott–Aldrich syndrome was linked in 1994 to mutations in a gene on the short arm of the X chromosome, which was termed Wiskott-Aldrich syndrome protein (WASp). It was later discovered that the disease X-linked thrombocytopenia (XLT) was also due to WASp mutations, but different ones from those that cause full-blown Wiskott–Aldrich syndrome. Furthermore, the rare disorder X-linked neutropenia has been linked to particular mutations of the WASp gene.

The WASp gene codes for the protein by the same name, which is 502 amino acids long and is mainly expressed in hematopoietic cells (the cells in the bone marrow that develop into blood cells). The main function of WASp is to activate actin polymerization by binding to the Arp2/3 complex. In T-cell, WASp is important because it is known to be activated via T-cell receptor (TCR) signaling pathways to induce cortical actin cytoskeleton rearrangements that are responsible for forming the immunological synapse.

The immune deficiency is caused by decreased antibody production, and an inability for T cells to become polarized [5] (making it a combined immunodeficiency). This leads to increased susceptibility to infections, particularly of the ears and sinuses. T cells are unable to reorganize their actin cytoskeleton. The type of mutation to the WASp gene correlates significantly with the degree of severity: those that led to the production of a truncated protein caused significantly more symptoms than those with a missense mutation but a normal-length WASp. Although autoimmune disease and malignancy occur in both types of mutation, those patients with truncated WASp carry a higher risk.

A defect in CD43 molecule has been found to be associated in patients with Wiskott–Aldrich syndrome.[6]

Causes

In Wiskott–Aldrich syndrome, the platelets are small and do not function properly. They are removed by the spleen, which leads to low platelet counts.

Wiskott–Aldrich syndrome was linked in 1994 to mutations in a gene on the short arm of the X chromosome, which was termed Wiskott-Aldrich syndrome protein (WASp). It was later discovered that the disease X-linked thrombocytopenia (XLT) was also due to WASp mutations, but different ones from those that cause full-blown Wiskott–Aldrich syndrome. Furthermore, the rare disorder X-linked neutropenia has been linked to particular mutations of the WASp gene.

The WASp gene codes for the protein by the same name, which is 502 amino acids long and is mainly expressed in hematopoietic cells (the cells in the bone marrow that develop into blood cells). The main function of WASp is to activate actin polymerization by binding to the Arp2/3 complex. In T-cell, WASp is important because it is known to be activated via T-cell receptor (TCR) signaling pathways to induce cortical actin cytoskeleton rearrangements that are responsible for forming the immunological synapse.

The immune deficiency is caused by decreased antibody production, and an inability for T cells to become polarized [5] (making it a combined immunodeficiency). This leads to increased susceptibility to infections, particularly of the ears and sinuses. T cells are unable to reorganize their actin cytoskeleton. The type of mutation to the WASp gene correlates significantly with the degree of severity: those that led to the production of a truncated protein caused significantly more symptoms than those with a missense mutation but a normal-length WASp. Although autoimmune disease and malignancy occur in both types of mutation, those patients with truncated WASp carry a higher risk.

A defect in CD43 molecule has been found to be associated in patients with Wiskott–Aldrich syndrome.[6]

Differentiating ((Page name)) from Other Diseases

Epidemiology and Demographics

The combined incidence of WAS and XLT is about 4-10 in 1 million live births. There is no geographical factor.

Risk Factors

Screening

Natural History, Complications, and Prognosis

Diagnosis

Diagnostic Study of Choice

  • The first laboratory test to be performed in the diagnosis of Wiskott-Aldrich syndrome is complete blood count with differential and peripheral blood smears.
  • The diagnosis of Wiskott-Aldrich syndrome is suspected if a male patient who presents with bruises, petechiae and the presence of thrombocytopenia with small platelet volume (micro thrombocytopenia) on the peripheral blood smear.
  • Identification of WAS gene mutations using DNA sequence analysis of WAS gene and detection of WASp expression by flow cytometry are necessary to confirm the diagnosis.[20][12]

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

  • There are no specific electrocardiogram findings associated with Wiskott-Aldrich syndrome.

X-ray

  • There are no specific x-ray findings associated with Wiskott-Aldrich syndrome. However, a chest x-ray may be helpful in the diagnosis of complications, which include pneumonia.

Echocardiography or Ultrasound

CT scan

MRI

  • There are no specific MRI findings associated with Wiskott-Aldrich syndrome.

Other Imaging Findings

  • There are no other imaging findings associated with Wiscott-Aldrich syndrome.

Other Diagnostic Studies

  • There are no other diagnostic tests associated with Wiskott-Aldrich syndrome.

Treatment

Medical Therapy

Treatment of Wiskott-Aldrich syndrome is based on correcting symptoms. Aspirin and other non-steroidal anti-inflammatory drugs should be avoided, since these may interfere with platelet function. A protective helmet can protect children from bleeding into the brain which could result from head injuries. For severely low platelet counts, patients may require platelet transfusions or a splenectomy. For patients with frequent infections, intravenous immunoglobulins (IVIG) can be given to boost the immune system. Anemia from bleeding may require iron supplementation or blood transfusion.

Surgery

  • Splenectomy: Splenectomy may be considered for some patients with Wiskott-Aldrich syndrome . Splenectomy may be found to improve platelet count as well as size of the platelets . However, sepsis is a life-threatening complication after splenectomy. Prophylactic antibiotics should always be used to prevent infections.[28][29]
  • Hematopoietic stem cell transplantation (HSCT):[30][31][32]
  • HSCT is the only standard curative treatment for Wiskott-Aldrich syndrome.

Primary Prevention

Secondary Prevention

References

  1. Aldrich RA, Steinberg AG, Campbell DC (1954). "Pedigree demonstrating a sex-linked recessive condition characterized by draining ears, eczematoid dermatitis and bloody diarrhea". Pediatrics. 13 (2): 133–9. PMID 13133561.
  2. Wiskott, A (1937). "Familiärer, angeborener Morbus Werlhofii? ("Familial congenital Werlhof's disease?")". Montsschr Kinderheilkd. 68: 212–16.
  3. Binder V, Albert MH, Kabus M, Bertone M, Meindl A, Belohradsky BH (2006). "The genotype of the original Wiskott phenotype". N. Engl. J. Med. 355 (17): 1790–3. doi:10.1056/NEJMoa062520. PMID 17065640.
  4. Jin Y, Mazza C, Christie JR; et al. (2004). "Mutations of the Wiskott-Aldrich Syndrome Protein (WASP): hotspots, effect on transcription, and translation and phenotype/genotype correlation". Blood. 104 (13): 4010–9. doi:10.1182/blood-2003-05-1592. PMID 15284122.
  5. 5.0 5.1 "Wiskott-Aldrich Syndrome: Immunodeficiency Disorders: Merck Manual Professional". Retrieved 2008-03-01.
  6. 6.0 6.1 PMID 1683685 (PMID 1683685)
    Citation will be completed automatically in a few minutes. Jump the queue or expand by hand
  7. Chiang S, Vergamini SM, Husami A, Neumeier L, Quinn K, Ellerhorst T, Sheppard L, Gifford C, Buchbinder D, Joshi A, Ifversen M, Kleiner GI, Bussel JB, Chandrakasan S, Pesek RD, Pozos TC, Rose MJ, Scurlock AM, Zhang K, Bryceson YT, Bleesing J, Marsh RA (July 2018). "Screening for Wiskott-Aldrich syndrome by flow cytometry". J. Allergy Clin. Immunol. 142 (1): 333–335.e8. doi:10.1016/j.jaci.2018.04.017. PMID 29729304. Vancouver style error: initials (help)
  8. 8.0 8.1 Giliani S, Fiorini M, Mella P, Candotti F, Schumacher RF, Wengler GS, Lalatta F, Fasth A, Badolato R, Ugazio AG, Albertini A, Notarangelo LD (January 1999). "Prenatal molecular diagnosis of Wiskott-Aldrich syndrome by direct mutation analysis". Prenat. Diagn. 19 (1): 36–40. PMID 10073904.
  9. 9.0 9.1 Sullivan KE, Mullen CA, Blaese RM, Winkelstein JA (December 1994). "A multiinstitutional survey of the Wiskott-Aldrich syndrome". J. Pediatr. 125 (6 Pt 1): 876–85. PMID 7996359.
  10. WEINTRAUB HD, WILSON WJ (August 1964). "PNEUMOCYSTIS CARINII PNEUMONIA IN WISKOTT-ALDRICH SYNDROME". Am. J. Dis. Child. 108: 198–200. PMID 14159941.
  11. Blancas-Galicia L, Escamilla-Quiroz C, Yamazaki-Nakashimada MA (2011). "[Wiskott-Aldrich Syndrome: An updated review]". Rev Alerg Mex (in Spanish; Castilian). 58 (4): 213–8. PMID 24007832.
  12. 12.0 12.1 Imai K, Morio T, Zhu Y, Jin Y, Itoh S, Kajiwara M, Yata J, Mizutani S, Ochs HD, Nonoyama S (January 2004). "Clinical course of patients with WASP gene mutations". Blood. 103 (2): 456–64. doi:10.1182/blood-2003-05-1480. PMID 12969986.
  13. Notarangelo LD (February 2013). "In Wiskott-Aldrich syndrome, platelet count matters". Blood. 121 (9): 1484–5. doi:10.1182/blood-2013-01-475913. PMID 23449611.
  14. Dupuis-Girod S, Medioni J, Haddad E, Quartier P, Cavazzana-Calvo M, Le Deist F, de Saint Basile G, Delaunay J, Schwarz K, Casanova JL, Blanche S, Fischer A (May 2003). "Autoimmunity in Wiskott-Aldrich syndrome: risk factors, clinical features, and outcome in a single-center cohort of 55 patients". Pediatrics. 111 (5 Pt 1): e622–7. PMID 12728121.
  15. Chen N, Zhang ZY, Liu DW, Liu W, Tang XM, Zhao XD (October 2015). "The clinical features of autoimmunity in 53 patients with Wiskott-Aldrich syndrome in China: a single-center study". Eur. J. Pediatr. 174 (10): 1311–8. doi:10.1007/s00431-015-2527-3. PMID 25877044.
  16. Ohya T, Yanagimachi M, Iwasawa K, Umetsu S, Sogo T, Inui A, Fujisawa T, Ito S (December 2017). "Childhood-onset inflammatory bowel diseases associated with mutation of Wiskott-Aldrich syndrome protein gene". World J. Gastroenterol. 23 (48): 8544–8552. doi:10.3748/wjg.v23.i48.8544. PMC 5752714. PMID 29358862.
  17. Cotelingam JD, Witebsky FG, Hsu SM, Blaese RM, Jaffe ES (1985). "Malignant lymphoma in patients with the Wiskott-Aldrich syndrome". Cancer Invest. 3 (6): 515–22. PMID 3910193.
  18. Yoshimi A, Kamachi Y, Imai K, Watanabe N, Nakadate H, Kanazawa T, Ozono S, Kobayashi R, Yoshida M, Kobayashi C, Hama A, Muramatsu H, Sasahara Y, Jakob M, Morio T, Ehl S, Manabe A, Niemeyer C, Kojima S (May 2013). "Wiskott-Aldrich syndrome presenting with a clinical picture mimicking juvenile myelomonocytic leukaemia". Pediatr Blood Cancer. 60 (5): 836–41. doi:10.1002/pbc.24359. PMID 23023736.
  19. Kobayashi R, Ariga T, Nonoyama S, Kanegane H, Tsuchiya S, Morio T, Yabe H, Nagatoshi Y, Kawa K, Tabuchi K, Tsuchida M, Miyawaki T, Kato S (November 2006). "Outcome in patients with Wiskott-Aldrich syndrome following stem cell transplantation: an analysis of 57 patients in Japan". Br. J. Haematol. 135 (3): 362–6. doi:10.1111/j.1365-2141.2006.06297.x. PMID 17032176.
  20. Jin Y, Mazza C, Christie JR, Giliani S, Fiorini M, Mella P, Gandellini F, Stewart DM, Zhu Q, Nelson DL, Notarangelo LD, Ochs HD (December 2004). "Mutations of the Wiskott-Aldrich Syndrome Protein (WASP): hotspots, effect on transcription, and translation and phenotype/genotype correlation". Blood. 104 (13): 4010–9. doi:10.1182/blood-2003-05-1592. PMID 15284122.
  21. Suri D, Singh S, Rawat A, Gupta A, Kamae C, Honma K, Nakagawa N, Imai K, Nonoyama S, Oshima K, Mitsuiki N, Ohara O, Bilhou-Nabera C, Proust A, Ahluwalia J, Dogra S, Saikia B, Minz RW, Sehgal S (March 2012). "Clinical profile and genetic basis of Wiskott-Aldrich syndrome at Chandigarh, North India". Asian Pac. J. Allergy Immunol. 30 (1): 71–8. PMID 22523910.
  22. De Bernardi A, Chessa Ricotti G, Galli L, Funis M (1990). "[Wiskott-Aldrich syndrome: description of a clinical case]". Pediatr Med Chir (in Italian). 12 (6): 691–3. PMID 2093894.
  23. Ochs HD, Slichter SJ, Harker LA, Von Behrens WE, Clark RA, Wedgwood RJ (February 1980). "The Wiskott-Aldrich syndrome: studies of lymphocytes, granulocytes, and platelets". Blood. 55 (2): 243–52. PMID 6444359.
  24. Buchbinder D, Nugent DJ, Fillipovich AH (2014). "Wiskott-Aldrich syndrome: diagnosis, current management, and emerging treatments". Appl Clin Genet. 7: 55–66. doi:10.2147/TACG.S58444. PMC 4012343. PMID 24817816.
  25. Humblet-Baron S, Sather B, Anover S, Becker-Herman S, Kasprowicz DJ, Khim S, Nguyen T, Hudkins-Loya K, Alpers CE, Ziegler SF, Ochs H, Torgerson T, Campbell DJ, Rawlings DJ (February 2007). "Wiskott-Aldrich syndrome protein is required for regulatory T cell homeostasis". J. Clin. Invest. 117 (2): 407–18. doi:10.1172/JCI29539. PMC 1764857. PMID 17218989.
  26. Orange JS, Ramesh N, Remold-O'Donnell E, Sasahara Y, Koopman L, Byrne M, Bonilla FA, Rosen FS, Geha RS, Strominger JL (August 2002). "Wiskott-Aldrich syndrome protein is required for NK cell cytotoxicity and colocalizes with actin to NK cell-activating immunologic synapses". Proc. Natl. Acad. Sci. U.S.A. 99 (17): 11351–6. doi:10.1073/pnas.162376099. PMC 123260. PMID 12177428.
  27. Wu EY, Ehrlich L, Handly B, Frush DP, Buckley RH (November 2016). "Clinical and imaging considerations in primary immunodeficiency disorders: an update". Pediatr Radiol. 46 (12): 1630–1644. doi:10.1007/s00247-016-3684-x. PMC 5083248. PMID 27655432.
  28. Lum LG, Tubergen DG, Corash L, Blaese RM (April 1980). "Splenectomy in the management of the thrombocytopenia of the Wiskott-Aldrich syndrome". N. Engl. J. Med. 302 (16): 892–6. doi:10.1056/NEJM198004173021604. PMID 6767187.
  29. Syrigos KN, Makrilia N, Neidhart J, Moutsos M, Tsimpoukis S, Kiagia M, Saif MW (September 2011). "Prolonged survival after splenectomy in Wiskott-Aldrich syndrome: a case report". Ital J Pediatr. 37: 42. doi:10.1186/1824-7288-37-42. PMC 3179709. PMID 21906397.
  30. Bach FH, Albertini RJ, Joo P, Anderson JL, Bortin MM (December 1968). "Bone-marrow transplantation in a patient with the Wiskott-Aldrich syndrome". Lancet. 2 (7583): 1364–6. PMID 4177931.
  31. Antoine C, Müller S, Cant A, Cavazzana-Calvo M, Veys P, Vossen J, Fasth A, Heilmann C, Wulffraat N, Seger R, Blanche S, Friedrich W, Abinun M, Davies G, Bredius R, Schulz A, Landais P, Fischer A (February 2003). "Long-term survival and transplantation of haemopoietic stem cells for immunodeficiencies: report of the European experience 1968-99". Lancet. 361 (9357): 553–60. PMID 12598139.
  32. Muñoz A, Olivé T, Martinez A, Bureo E, Maldonado MS, Diaz de Heredia C, Sastre A, Gonzalez-Vicent M (September 2007). "Allogeneic hemopoietic stem cell transplantation (HSCT) for Wiskott-Aldrich syndrome: a report of the Spanish Working Party for Blood and Marrow Transplantation in Children (GETMON)". Pediatr Hematol Oncol. 24 (6): 393–402. doi:10.1080/08880010701454404. PMID 17710656.
  33. Derry JM, Ochs HD, Francke U (August 1994). "Isolation of a novel gene mutated in Wiskott-Aldrich syndrome". Cell. 78 (4): 635–44. PMID 8069912.



Template:WikiDoc Sources