Immunodeficiency affecting cellular and humoral Immunity: Difference between revisions

Jump to navigation Jump to search
Ali Akram (talk | contribs)
Ali Akram (talk | contribs)
No edit summary
Line 325: Line 325:
  | pmid = 10021471
  | pmid = 10021471
}}</ref>
}}</ref>
==Reticular dysgenesis==
*Autosomal recessive (AR) transmission.
*It is caused by homozygous or compound heterozygous mutation in the mitochondrial adenylate kinase-2 gene (AK2) on chromosome 1.
*Patients present with agranulocytosis, lymphopenia and sensorineural hearing loss.
*Bone marrow transplant is the treatment of choice.<ref>{{Cite journal
| author = [[R. J. Levinsky]] & [[K. Tiedeman]]
| title = Successful bone-marrow transplantation for reticular dysgenesis
| journal = [[Lancet (London, England)]]
| volume = 1
| issue = 8326 Pt 1
| pages = 671–672
| year = 1983
| month = March
| pmid = 6132037
}}</ref>
==DNA Ligase IV deficiency==
*Autosomal recessive (AR) transmission.
*It is caused by homozygous or compound heterozygous mutation in the LIG4 gene on chromosome 13.
*Patients show unusual facial features, microcephaly, growth and/or developmental delay, pancytopenia, and various skin abnormalities.<ref>{{Cite journal
| author = [[M. O'Driscoll]], [[K. M. Cerosaletti]], [[P. M. Girard]], [[Y. Dai]], [[M. Stumm]], [[B. Kysela]], [[B. Hirsch]], [[A. Gennery]], [[S. E. Palmer]], [[J. Seidel]], [[R. A. Gatti]], [[R. Varon]], [[M. A. Oettinger]], [[H. Neitzel]], [[P. A. Jeggo]] & [[P. Concannon]]
| title = DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency
| journal = [[Molecular cell]]
| volume = 8
| issue = 6
| pages = 1175–1185
| year = 2001
| month = December
| pmid = 11779494
}}</ref>
   
 


==References==
==References==

Revision as of 17:27, 11 October 2018


Immunodeficiency Main Page

Home

Overview

Classification

Immunodeficiency Affecting Cellular and Humoral Immunity

Combined Immunodeficiency

Predominantly Antibody Deficiency

Diseases of Immune Dysregulation

Congenital Defects of Phagocytes

Defects in Intrinsic and Innate Immunity

Auto-inflammatory Disorders

Complement Deficiencies

Phenocopies of Primary Immunodeficiency

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Ali Akram, M.B.B.S.[2], Anmol Pitliya, M.B.B.S. M.D.[3]

Overview

Classification

 
 
 
 
 
 
 
 
 
Immunodeficiency affecting cellular and humoral immunity
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CD19 NL: SCID T-ve B+ve
 
 
 
 
 
 
 
CD19 ↓: SCID T-ve B-ve
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SCID T-ve B+ve NK-ve
 
 
 
SCID T-ve B+ve NK+ve
 
SCID T-ve B-ve NK-ve
 
 
 
SCID T-ve B-ve NK+ve
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yc deficiency
 
 
 
 
IL7Ra .
 
 
ADA def
 
Microcephaly present
 
 
Microcephaly absent
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
JAK-3 def
 
 
 
 
CD3D, CD3E, CD247
 
 
Reticular dysgenesis
 
 
 
DNA Ligase IV def
 
 
 
RAG1/2 def
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CD45 def
 
 
 
 
 
 
 
XLF def
 
 
 
DCLRE1C def
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Coronin-1A def
 
 
 
 
 
 
 
DNA PKcs def
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Winged helix def
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

γc (IL-2Rγ) deficiency

  • X-linked transmission, presenting usually between ages of 3-6 months.
  • It is caused by mutation in the gene encoding the gamma sub-unit of interleukin-2 receptor (IL2RG).
  • Characterized by susceptibility to repeated bacterial, viral and fungal infections, lack of delayed hypersensitivity and failure to thrive.[1]
  • HSCT is the mainstay of treatment.[2]

JAK-3 deficiency

  • Autosomal recessive(AR) transmission
  • It is caused by homozygous or compound heterozygous mutation in the Janus kinase-3 gene on chromosome 19p13.
  • Similar presentation to X-linked SCID.[3]
  • HSCT is the mainstay of treatment.[4]

IL7a

  • Autosomal recessive(AR) transmission
  • It is caused by homozygous or compound heterozygous mutation in the interleukin-7 receptor gene on chromosome 5p13.[5]
  • Similar presemtation to X-linked SCID[6]

CD3D

  • Autosomal recessive(AR) transmission
  • It is caused by mutation in the delta chain of the T3 T-cell antigen (OKT3) on chromosome 11.[7]
  • Patients present with recurrent infections and failure to thrive.
  • HSCT is the mainstay of treatment. [8]

CD3E

  • Autosomal recessive (AR) transmission.
  • It is caused by mutation in the epsilon gene of T3 T-cell antigen on chromosome 11.[9]

CD247

  • Autosomal recessive (AR) transmission.
  • It is caused by homozygous mutation in the CD247 (CD3Z) gene on chromosome 1.[10]

CD45 deficiency

  • Autosomal recessive (AR) transmission.
  • It is caused by mutation in the CD45 gene on chromosome 1.[11]

Coronin-1A deficiency

  • Autosomal recessive (AR) transmission.
  • It is caused by mutation in the CORO1A gene(which encodes an actin-regulating protein that is expressed mainly in hematopoietic cells) on chromosome 16.[12]

Winged helix deficiency/Nude SCID

  • Autosomal recessive (AR) transmission.
  • It is caused by a mutation in the FOXN1 gene(a transcription factor essential for the development and function of thymic epithelial cells) on chromosome 17. [13][14]
  • Patients usually have the clinical triad of athymia, congenital alopecia universalis and nail dystrophy and present in early few months of life with severe, recurrent infections.[15]CNS defects have also been reported which include anencephaly and spina bifida.[16]
  • Initial management includes immediate referral to a specialist center in suspected patients and providing supportive care until a definitive diagnosis reached.[17]
  • Prophylaxis and early treatment of infections is also an important step in management.[18]

ADA deficiency

  • Autosomal recessive (AR) transmission.
  • It is caused by homozygous or compound heterozygous mutation in the adenosine deaminase gene (ADA) on chromosome 20.
  • Patients have chondrosternal dysplasia, neurologic abnormalities like movement disorders, nystagmus, sensorineural deafness and cognitive defects, and hepatic dysfucnction.[19][20][21]
  • Treatment options include:
    1. Enzyme replacement therapy: PEG-ADA is used as the replacement therapy.[22]
    2. Bone marrow transplantation[23]

Reticular dysgenesis

  • Autosomal recessive (AR) transmission.
  • It is caused by homozygous or compound heterozygous mutation in the mitochondrial adenylate kinase-2 gene (AK2) on chromosome 1.
  • Patients present with agranulocytosis, lymphopenia and sensorineural hearing loss.
  • Bone marrow transplant is the treatment of choice.[24]

DNA Ligase IV deficiency

  • Autosomal recessive (AR) transmission.
  • It is caused by homozygous or compound heterozygous mutation in the LIG4 gene on chromosome 13.
  • Patients show unusual facial features, microcephaly, growth and/or developmental delay, pancytopenia, and various skin abnormalities.[25]



References

  1. W. H. HITZIG & H. WILLI (1961). "[Hereditary lymphoplasmocytic dysgenesis ("alymphocytosis with agammaglobulinemia")]". Schweizerische medizinische Wochenschrift. 91: 1625–1633. PMID 13907792. Unknown parameter |month= ignored (help)
  2. Fred S. Rosen (2002). "Successful gene therapy for severe combined immunodeficiency". The New England journal of medicine. 346 (16): 1241–1243. doi:10.1056/NEJM200204183461612. PMID 11961154. Unknown parameter |month= ignored (help)
  3. F. Candotti, S. A. Oakes, J. A. Johnston, S. Giliani, R. F. Schumacher, P. Mella, M. Fiorini, A. G. Ugazio, R. Badolato, L. D. Notarangelo, F. Bozzi, P. Macchi, D. Strina, P. Vezzoni, R. M. Blaese, J. J. O'Shea & A. Villa (1997). "Structural and functional basis for JAK3-deficient severe combined immunodeficiency". Blood. 90 (10): 3996–4003. PMID 9354668. Unknown parameter |month= ignored (help)
  4. Joseph L. Roberts, Andrea Lengi, Stephanie M. Brown, Min Chen, Yong-Jie Zhou, John J. O'Shea & Rebecca H. Buckley (2004). "Janus kinase 3 (JAK3) deficiency: clinical, immunologic, and molecular analyses of 10 patients and outcomes of stem cell transplantation". Blood. 103 (6): 2009–2018. doi:10.1182/blood-2003-06-2104. PMID 14615376. Unknown parameter |month= ignored (help)
  5. A. Puel, S. F. Ziegler, R. H. Buckley & W. J. Leonard (1998). "Defective IL7R expression in T(-)B(+)NK(+) severe combined immunodeficiency". Nature genetics. 20 (4): 394–397. doi:10.1038/3877. PMID 9843216. Unknown parameter |month= ignored (help)
  6. C. M. Roifman, J. Zhang, D. Chitayat & N. Sharfe (2000). "A partial deficiency of interleukin-7R alpha is sufficient to abrogate T-cell development and cause severe combined immunodeficiency". Blood. 96 (8): 2803–2807. PMID 11023514. Unknown parameter |month= ignored (help)
  7. P. van den Elsen, G. Bruns, D. S. Gerhard, D. Pravtcheva, C. Jones, D. Housman, F. A. Ruddle, S. Orkin & C. Terhorst (1985). "Assignment of the gene coding for the T3-delta subunit of the T3-T-cell receptor complex to the long arm of human chromosome 11 and to mouse chromosome 9". Proceedings of the National Academy of Sciences of the United States of America. 82 (9): 2920–2924. PMID 3857625. Unknown parameter |month= ignored (help)
  8. Grace P. Yu, Kari C. Nadeau, David R. Berk, Genevieve de Saint Basile, Nathalie Lambert, Perrine Knapnougel, Joseph Roberts, Kristina Kavanau, Elizabeth Dunn, E. Richard Stiehm, David B. Lewis, Dale T. Umetsu, Jennifer M. Puck & Morton J. Cowan (2011). "Genotype, phenotype, and outcomes of nine patients with T-B+NK+ SCID". Pediatric transplantation. 15 (7): 733–741. doi:10.1111/j.1399-3046.2011.01563.x. PMID 21883749. Unknown parameter |month= ignored (help)
  9. D. P. Gold, J. J. van Dongen, C. C. Morton, G. A. Bruns, P. van den Elsen, A. H. Geurts van Kessel & C. Terhorst (1987). "The gene encoding the epsilon subunit of the T3/T-cell receptor complex maps to chromosome 11 in humans and to chromosome 9 in mice". Proceedings of the National Academy of Sciences of the United States of America. 84 (6): 1664–1668. PMID 2882512. Unknown parameter |month= ignored (help)
  10. A. M. Weissman, D. Hou, D. G. Orloff, W. S. Modi, H. Seuanez, S. J. O'Brien & R. D. Klausner (1988). "Molecular cloning and chromosomal localization of the human T-cell receptor zeta chain: distinction from the molecular CD3 complex". Proceedings of the National Academy of Sciences of the United States of America. 85 (24): 9709–9713. PMID 2974162. Unknown parameter |month= ignored (help)
  11. M. F. Seldin, H. C. Morse, R. C. LeBoeuf & A. D. Steinberg (1988). "Establishment of a molecular genetic map of distal mouse chromosome 1: further definition of a conserved linkage group syntenic with human chromosome 1q". Genomics. 2 (1): 48–56. PMID 3384439. Unknown parameter |month= ignored (help)
  12. Lawrence R. Shiow, David W. Roadcap, Kenneth Paris, Susan R. Watson, Irina L. Grigorova, Tonya Lebet, Jinping An, Ying Xu, Craig N. Jenne, Niko Foger, Ricardo U. Sorensen, Christopher C. Goodnow, James E. Bear, Jennifer M. Puck & Jason G. Cyster (2008). "The actin regulator coronin 1A is mutant in a thymic egress-deficient mouse strain and in a patient with severe combined immunodeficiency". Nature immunology. 9 (11): 1307–1315. doi:10.1038/ni.1662. PMID 18836449. Unknown parameter |month= ignored (help)
  13. M. Schorpp, M. Hofmann, T. N. Dear & T. Boehm (1997). "Characterization of mouse and human nude genes". Immunogenetics. 46 (6): 509–515. PMID 9321431.
  14. Saulius Zuklys, Adam Handel, Saule Zhanybekova, Fatima Govani, Marcel Keller, Stefano Maio, Carlos E. Mayer, Hong Ying Teh, Katrin Hafen, Giuseppe Gallone, Thomas Barthlott, Chris P. Ponting & Georg A. Hollander (2016). "Foxn1 regulates key target genes essential for T cell development in postnatal thymic epithelial cells". Nature immunology. 17 (10): 1206–1215. doi:10.1038/ni.3537. PMID 27548434. Unknown parameter |month= ignored (help)
  15. C. Pignata, M. Fiore, V. Guzzetta, A. Castaldo, G. Sebastio, F. Porta & A. Guarino (1996). "Congenital Alopecia and nail dystrophy associated with severe functional T-cell immunodeficiency in two sibs". American journal of medical genetics. 65 (2): 167–170. doi:10.1002/(SICI)1096-8628(19961016)65:2<167::AID-AJMG17>3.0.CO;2-O. PMID 8911612. Unknown parameter |month= ignored (help)
  16. S. Amorosi, M. D'Armiento, G. Calcagno, I. Russo, M. Adriani, A. M. Christiano, L. Weiner, J. L. Brissette & C. Pignata (2008). "FOXN1 homozygous mutation associated with anencephaly and severe neural tube defect in human athymic Nude/SCID fetus". Clinical genetics. 73 (4): 380–384. doi:10.1111/j.1399-0004.2008.00977.x. PMID 18339010. Unknown parameter |month= ignored (help)
  17. Lizzy Rivers & H. Bobby Gaspar (2015). "Severe combined immunodeficiency: recent developments and guidance on clinical management". Archives of disease in childhood. 100 (7): 667–672. doi:10.1136/archdischild-2014-306425. PMID 25564533. Unknown parameter |month= ignored (help)
  18. Linda M. Griffith, Morton J. Cowan, Luigi D. Notarangelo, Jennifer M. Puck, Rebecca H. Buckley, Fabio Candotti, Mary Ellen Conley, Thomas A. Fleisher, H. Bobby Gaspar, Donald B. Kohn, Hans D. Ochs, Richard J. O'Reilly, J. Douglas Rizzo, Chaim M. Roifman, Trudy N. Small & William T. Shearer (2009). "Improving cellular therapy for primary immune deficiency diseases: recognition, diagnosis, and management". The Journal of allergy and clinical immunology. 124 (6): 1152–1160. doi:10.1016/j.jaci.2009.10.022. PMID 20004776. Unknown parameter |month= ignored (help)
  19. H. Ratech, M. A. Greco, G. Gallo, D. L. Rimoin, H. Kamino & R. Hirschhorn (1985). "Pathologic findings in adenosine deaminase-deficient severe combined immunodeficiency. I. Kidney, adrenal, and chondro-osseous tissue alterations". The American journal of pathology. 120 (1): 157–169. PMID 4014441. Unknown parameter |month= ignored (help)
  20. R. Hirschhorn, P. S. Paageorgiou, H. H. Kesarwala & L. T. Taft (1980). "Amerioration of neurologic abnormalities after "enzyme replacement" in adenosine deaminase deficiency". The New England journal of medicine. 303 (7): 377–380. doi:10.1056/NEJM198008143030706. PMID 6156414. Unknown parameter |month= ignored (help)
  21. M. E. Bollinger, F. X. Arredondo-Vega, I. Santisteban, K. Schwarz, M. S. Hershfield & H. M. Lederman (1996). "Brief report: hepatic dysfunction as a complication of adenosine deaminase deficiency". The New England journal of medicine. 334 (21): 1367–1371. doi:10.1056/NEJM199605233342104. PMID 8614422. Unknown parameter |month= ignored (help)
  22. M. S. Hershfield (1995). "PEG-ADA: an alternative to haploidentical bone marrow transplantation and an adjunct to gene therapy for adenosine deaminase deficiency". Human mutation. 5 (2): 107–112. doi:10.1002/humu.1380050202. PMID 7749407.
  23. R. H. Buckley, S. E. Schiff, R. I. Schiff, L. Markert, L. W. Williams, J. L. Roberts, L. A. Myers & F. E. Ward (1999). "Hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency". The New England journal of medicine. 340 (7): 508–516. doi:10.1056/NEJM199902183400703. PMID 10021471. Unknown parameter |month= ignored (help)
  24. R. J. Levinsky & K. Tiedeman (1983). "Successful bone-marrow transplantation for reticular dysgenesis". Lancet (London, England). 1 (8326 Pt 1): 671–672. PMID 6132037. Unknown parameter |month= ignored (help)
  25. M. O'Driscoll, K. M. Cerosaletti, P. M. Girard, Y. Dai, M. Stumm, B. Kysela, B. Hirsch, A. Gennery, S. E. Palmer, J. Seidel, R. A. Gatti, R. Varon, M. A. Oettinger, H. Neitzel, P. A. Jeggo & P. Concannon (2001). "DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency". Molecular cell. 8 (6): 1175–1185. PMID 11779494. Unknown parameter |month= ignored (help)