Congenital defects of phagocytes: Difference between revisions
No edit summary |
No edit summary |
||
Line 506: | Line 506: | ||
==GATA2 def (MonoMac syndrome)== | ==GATA2 def (MonoMac syndrome)== | ||
*[[Autosomal dominant]] (AD) transmission | *[[Autosomal dominant]] (AD) transmission.<ref>{{Cite journal | ||
| author = [[Donald C. Vinh]], [[Smita Y. Patel]], [[Gulbu Uzel]], [[Victoria L. Anderson]], [[Alexandra F. Freeman]], [[Kenneth N. Olivier]], [[Christine Spalding]], [[Stephen Hughes]], [[Stefania Pittaluga]], [[Mark Raffeld]], [[Lynn R. Sorbara]], [[Houda Z. Elloumi]], [[Douglas B. Kuhns]], [[Maria L. Turner]], [[Edward W. Cowen]], [[Danielle Fink]], [[Debra Long-Priel]], [[Amy P. Hsu]], [[Li Ding]], [[Michelle L. Paulson]], [[Adeline R. Whitney]], [[Elizabeth P. Sampaio]], [[David M. Frucht]], [[Frank R. DeLeo]] & [[Steven M. Holland]] | | author = [[Donald C. Vinh]], [[Smita Y. Patel]], [[Gulbu Uzel]], [[Victoria L. Anderson]], [[Alexandra F. Freeman]], [[Kenneth N. Olivier]], [[Christine Spalding]], [[Stephen Hughes]], [[Stefania Pittaluga]], [[Mark Raffeld]], [[Lynn R. Sorbara]], [[Houda Z. Elloumi]], [[Douglas B. Kuhns]], [[Maria L. Turner]], [[Edward W. Cowen]], [[Danielle Fink]], [[Debra Long-Priel]], [[Amy P. Hsu]], [[Li Ding]], [[Michelle L. Paulson]], [[Adeline R. Whitney]], [[Elizabeth P. Sampaio]], [[David M. Frucht]], [[Frank R. DeLeo]] & [[Steven M. Holland]] | ||
| title = Autosomal dominant and sporadic monocytopenia with susceptibility to mycobacteria, fungi, papillomaviruses, and myelodysplasia | | title = Autosomal dominant and sporadic monocytopenia with susceptibility to mycobacteria, fungi, papillomaviruses, and myelodysplasia | ||
Line 518: | Line 517: | ||
| doi = 10.1182/blood-2009-03-208629 | | doi = 10.1182/blood-2009-03-208629 | ||
| pmid = 20040766 | | pmid = 20040766 | ||
}}</ref><ref>{{Cite journal | }}</ref> | ||
*This syndrome is characterized by decreased or absent circulating [[monocytes]], [[Dendritic cells|dendritic cells,]] [[natural killer cells]], and [[B cells]]. Patients are at increased risk of developing severe or recurrent nontuberculous mycobacterial (NTM) infections, although opportunistic fungal infections and disseminated human papillomavirus [[HPV|(HPV]]) infections also occur.<ref>{{Cite journal | |||
| author = [[Venetia Bigley]], [[Muzlifah Haniffa]], [[Sergei Doulatov]], [[Xiao-Nong Wang]], [[Rachel Dickinson]], [[Naomi McGovern]], [[Laura Jardine]], [[Sarah Pagan]], [[Ian Dimmick]], [[Ignatius Chua]], [[Jonathan Wallis]], [[Jim Lordan]], [[Cliff Morgan]], [[Dinakantha S. Kumararatne]], [[Rainer Doffinger]], [[Mirjam van der Burg]], [[Jacques van Dongen]], [[Andrew Cant]], [[John E. Dick]], [[Sophie Hambleton]] & [[Matthew Collin]] | | author = [[Venetia Bigley]], [[Muzlifah Haniffa]], [[Sergei Doulatov]], [[Xiao-Nong Wang]], [[Rachel Dickinson]], [[Naomi McGovern]], [[Laura Jardine]], [[Sarah Pagan]], [[Ian Dimmick]], [[Ignatius Chua]], [[Jonathan Wallis]], [[Jim Lordan]], [[Cliff Morgan]], [[Dinakantha S. Kumararatne]], [[Rainer Doffinger]], [[Mirjam van der Burg]], [[Jacques van Dongen]], [[Andrew Cant]], [[John E. Dick]], [[Sophie Hambleton]] & [[Matthew Collin]] | ||
| title = The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency | | title = The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency | ||
Line 544: | Line 544: | ||
==Specific granule deficiency== | ==Specific granule deficiency== | ||
*[[Autosomal recessive]] (AR) transmission | *[[Autosomal recessive]] (AR) transmission.<ref>{{Cite journal | ||
| author = [[A. F. Gombart]], [[M. Shiohara]], [[S. H. Kwok]], [[K. Agematsu]], [[A. Komiyama]] & [[H. P. Koeffler]] | | author = [[A. F. Gombart]], [[M. Shiohara]], [[S. H. Kwok]], [[K. Agematsu]], [[A. Komiyama]] & [[H. P. Koeffler]] | ||
| title = Neutrophil-specific granule deficiency: homozygous recessive inheritance of a frameshift mutation in the gene encoding transcription factor CCAAT/enhancer binding protein--epsilon | | title = Neutrophil-specific granule deficiency: homozygous recessive inheritance of a frameshift mutation in the gene encoding transcription factor CCAAT/enhancer binding protein--epsilon | ||
Line 557: | Line 555: | ||
| pmid = 11313242 | | pmid = 11313242 | ||
}}</ref> | }}</ref> | ||
*It is cause by homozygous mutation in the [[CEBPE]] gene on [[chromosome 14]]. | |||
*[[Neutrophils]] of these patients display atypical bilobed nuclei. | |||
==Pulmonary alveolar proteinosis== | ==Pulmonary alveolar proteinosis== | ||
*[[Autosomal recessive]] (AR) transmission. | *[[Autosomal recessive]] (AR) transmission.<ref>{{Cite journal | ||
| author = [[T. Suzuki]], [[B. Maranda]], [[T. Sakagami]], [[P. Catellier]], [[C.-Y. Couture]], [[B. C. Carey]], [[C. Chalk]] & [[B. C. Trapnell]] | |||
| title = Hereditary pulmonary alveolar proteinosis caused by recessive CSF2RB mutations | |||
| journal = [[The European respiratory journal]] | |||
| volume = 37 | |||
| issue = 1 | |||
| pages = 201–204 | |||
| year = 2011 | |||
| month = January | |||
| doi = 10.1183/09031936.00090610 | |||
| pmid = 21205713 | |||
}}</ref> | |||
*It is caused by homozygous mutation in the [[CSF2RB]] gene on [[chromosome 22]]. | *It is caused by homozygous mutation in the [[CSF2RB]] gene on [[chromosome 22]]. | ||
*It is a rare lung disease characterized by the ineffective clearance of surfactant by alveolar macrophages causing respiratory failure.<ref>{{Cite journal | *It is a rare lung disease characterized by the ineffective clearance of surfactant by alveolar macrophages causing respiratory failure.<ref>{{Cite journal | ||
Line 576: | Line 587: | ||
==Chronic granulomatous disease (CGD)== | ==Chronic granulomatous disease (CGD)== | ||
*[[X-linked recessive]] transmission. However, it can also have [[autosomal recessive]] transmission in a few cases. | *[[X-linked recessive]] transmission. However, it can also have [[autosomal recessive]] transmission in a few cases.<ref>{{Cite journal | ||
| author = [[D. B. Windhorst]] & [[J. F. Soothill]] | |||
| title = Inheritance of chronic granulomatous disease | |||
| journal = [[Lancet (London, England)]] | |||
| volume = 2 | |||
| issue = 7619 | |||
| pages = 543–544 | |||
| year = 1969 | |||
| month = September | |||
| pmid = 4184856 | |||
}}</ref> | |||
*It results from an inability of the phagocytes to kill microbes that they have already ingested. | *It results from an inability of the phagocytes to kill microbes that they have already ingested. | ||
*Patients present with pneumonia, [[osteomyelitis]] and recurrent abscesses of the skin and organs.<ref>{{Cite journal | *Patients present with pneumonia, [[osteomyelitis]] and recurrent abscesses of the skin and organs.<ref>{{Cite journal | ||
Line 607: | Line 628: | ||
==Glucose-6-phosphate dehydrogenase deficiency (G6PD) Class 1== | ==Glucose-6-phosphate dehydrogenase deficiency (G6PD) Class 1== | ||
*[[X-linked dominant]] (XLD) transmission. | *[[X-linked dominant]] (XLD) transmission.<ref>{{Cite journal | ||
| author = [[Lucio Luzzatto]] & [[Paolo Arese]] | |||
| title = Favism and Glucose-6-Phosphate Dehydrogenase Deficiency | |||
| journal = [[The New England journal of medicine]] | |||
| volume = 378 | |||
| issue = 1 | |||
| pages = 60–71 | |||
| year = 2018 | |||
| month = January | |||
| pmid = 29298156 | |||
}}</ref> | |||
*It is caused by mutation in the [[G6PD]] gene on chromosome X causing decreased G6PD enzyme levels. | *It is caused by mutation in the [[G6PD]] gene on chromosome X causing decreased G6PD enzyme levels. | ||
*Patients typically present with acute [[hemolytic anemia]] and [[neonatal jaundice]]. | *Patients typically present with acute [[hemolytic anemia]] and [[neonatal jaundice]]. |
Revision as of 17:15, 31 October 2018
Immunodeficiency Main Page |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Ali Akram, M.B.B.S.[2], Anmol Pitliya, M.B.B.S. M.D.[3]
Overview
Phagocytes are important cells of the immune system which have the ability to ingest and kill foreign pathogens encountered by the body. In congenital phagocyte cell defects, the ability of phagocytes to kill foreign pathogens is impaired, leading to widespread infections. Congenital defects of phagocytes can be divided into two types:
- Defects of phagocyte number.
- Defects of phagocyte function.
Classification
Congenital defects of Phagocyte | |||||||||||||||
Congenital defects of phagocyte number | Congenital defects of phagocyte function | ||||||||||||||
Congeital Defects of Phagocyte Number
Congenital defects of phagocyte number | |||||||||||||||||||||||||||
Syndrome associated | No syndrome associated | ||||||||||||||||||||||||||
Shwachman-Diamond syndrome | Elastase deficiency (SCN1) | ||||||||||||||||||||||||||
G6PC3 deficiency (SCN4) | HAX1 deficiency (Kostmann Disease) (SCN3) | ||||||||||||||||||||||||||
Glycogen storage disease type 1b | GFI 1 deficiency (SCN2) | ||||||||||||||||||||||||||
Cohen syndrome | X-linked neutropenia/myelodysplasia WAS GOF | ||||||||||||||||||||||||||
Barth Syndrome | G-CSF receptor deficiency | ||||||||||||||||||||||||||
Clericuzio syndrome (poikiloderma with neutropenia) | Neutropenia with combined immune deficiency | ||||||||||||||||||||||||||
VPS45 deficiency(SCN5) | |||||||||||||||||||||||||||
P14/LAMTOR2 deficiency | |||||||||||||||||||||||||||
JAGN1 deficiency | |||||||||||||||||||||||||||
methylglutacoic aciduria | |||||||||||||||||||||||||||
SMARCD2 deficiency | |||||||||||||||||||||||||||
WDR1 deficiency | |||||||||||||||||||||||||||
HYOU1 deficiency | |||||||||||||||||||||||||||
Congenital defects of phagocyte function
Congenital defects of phagocyte function | |||||||||||||||||||||||||||||||||||
Syndrome associated | No Syndrome associated;DHR assay(or NBT test)? | ||||||||||||||||||||||||||||||||||
Cystic Fibrosis | Normal | Abnormal | |||||||||||||||||||||||||||||||||
Papillion-Lefèvre | GATA2 def (MonoMac syndrome | CGD | |||||||||||||||||||||||||||||||||
Localized juvenile periodontitis | Specific granule deficiency | Rac 2 deficiency | |||||||||||||||||||||||||||||||||
B-Actin | Pulmonary alveolar proteinosis | G6PD def Class 1 | |||||||||||||||||||||||||||||||||
Leukocyte adhesion deficiency | |||||||||||||||||||||||||||||||||||
Shwachman-Diamond Syndrome
- Autosomal recessive (AR) transmission.[1]
- It is caused by compound heterozygous or homozygous mutations in the SBDS gene on chromosome 7.[2]
- Patients present with exocrine pancreatic dysfunction, bony metaphyseal dysostosis, and pancytopenias.[3]
- CT scan can be useful in the diagnosis.[4]
For more information on Shwachman-Diamond syndrome, click here.
G6PC3 deficiency
- Autosomal recessive (AR) transmission.[5]
- It is caused by homozygous mutation in the G6PC3 gene on chromosome 17.
- Patients present with congenital neutropenia, cardiac abnormalities, inner ear deafness, neonatal sepsis and a prominent superficial venous pattern.
Glycogen storage disease type 1b
- Autosomal recessive (AR) transmission.[6]
- It is caused by homozygous or compound heterozygous mutation in the G6PT1 gene which encodes glucose-6-phosphate translocase, on chromosome 11.
- Patients present with short stature, hepatomegaly, hypertension, eruptive xanthoma and hyperlipidemia.[7]
For more information on Glycogen storage disease type 1b, click here.
Cohen Syndrome
- Autosomal recessive (AR) transmission.[8]
- It is caused by homozygous or compound heterozygous mutations in the COH1 gene on chromosome 8.
- Patients present with non-progressive psychomotor retardation, motor clumsiness, microcephaly, high-arched eyelids, short philtrum, thick hair, low hairline, hypotonia, hyperextensibility of the joints, retinochoroidal dystrophy, myopia, and granulocytopenia.
For more information on Cohen Syndrome, click here.
Barth Syndrome
- X-linked recessive (XLR) transmission.[9]
- It is caused by mutation in the tafazzin gene (TAZ) on chromosome X.
- Patients present with dilated cardiomyopathy, a predominantly proximal skeletal myopathy, growth retardation, organic aciduria, and neutropenia.
For more information on Barth Syndrome, click here.
Clericuzio syndrome (poikiloderma with neutropenia)
- Autosomal recessive (AR) transmission.[10]
- It is caused by homozygous or compound heterozygous mutation in the USB1 gene on chromosome 16.
- Patients present with a gradual, centripetally spreading, papular erythematous rash on the limbs during the first year of life. Neutropenia may also be present.
VPS45 deficiency (SCN5)
- Autosomal recessive (AR) transmission.[11]
- It is caused by homozygous mutation in the VPS45 gene on chromosome 1.
- Patients present in childhood with poor weight gain, hepatosplenomegaly, severe infections, hypergammaglobulinemia, nephromegaly due to extramedullary hematopoiesis, and bone marrow fibrosis.
P14/LAMTOR2 deficiency
- Autosomal recessive (AR) transmission.[12]
- Patients present with short stature, hypopigmented skin, coarse facial features and recurrent bronchopulmonary infections.
JAGN1 deficiency
- Autosomal recessive (AR) transmission.[13]
- Patients present with aberrant myeloid cell homeostasis and congenital neutropenia.
3-Methylglutaconic aciduria
- Autosomal recessive (AR) transmission.[14]
- It is caused by homozygous or compound heterozygous mutation in the CLPB gene on chromosome 11, which leads to by increased levels of 3-methylglutaconic acid (3-MGA) associated with neurologic deterioration and neutropenia.
- Patients present with delayed psychomotor development, congenital neutropenia, brain atrophy, microcephaly, movement disorders and cataracts.
For more information on 3-Methylglutaconic aciduria, click here.
SMARCD2 deficiency
- Autosomal recessive (AR) transmission.[15]
- It is caused by a mutation in the SMARCD2 gene on chromosome 17.[16]
- Patients present with myelodysplasia, bone defects and developmental abnormalities.
WDR1 deficiency
- Autosomal recessive (AR) transmission.
- It is caused by mutation in the WDR1 gene on chromosome 4.[17]
- Patients present with recurrent infections, mild neutropenia, impaired wound healing and severe stomatitis with oral stenosis.[18]
HYOU1 deficiency
- Autosomal recessive (AR) transmission.
- It is caused by mutation in the HYOU1 gene on chromosome 11.
- Patients present with hypoglycemia and infections.
Elastase deficiency (SCN1)
- Autosomal dominant (AD) transmission.[19]
- It is caused by a mutation in the ELANE gene on chromosome 19.
- Patients present with cyclic neutropenia starting in childhood with a cycle of approximately 21 days. Recurrent infections with fever are also common features.[20]
- The mainstay of treatment is giving granulocyte-colony stimulating factor (GCSF or CSF3)[21]
HAX1 deficiency (Kostmann Disease) (SCN3)
- Autosomal recessive (AR) transmission.[22]
- It is caused by homozygous or compound heterozygous mutation in the HAX1 gene on chromosome 1.
- Patients present with recurrent bacterial infections and neurologic abnormalities like psychomotor retardation and seizures. Patients are also at increased risk of developing leukemia and myelodysplastic syndrome.[23]
GFI 1 deficiency
- Autosomal dominant (AD) transmission.
- B and T cell lymphopenia is the major feature of this disease.
X-linked neutropenia/myelodysplasia WAS GOF
- X-linked recessive transmission.[24]
- Patients present with myeloid maturation arrest and monocytopenia.
G-CSF receptor deficiency
- Autosomal recessive (AR) transmission.
- It is caused by a mutation in CSF3R gene on chromosome 1.
Neutropenia with combined immune deficiency
- Autosomal recessive (AR) transmission.[26]
- It is caused by a mutation in MKL1 gene on chromosome 22.
- Patients present with lymphopenia and thrombocytopenia.
Cystic fibrosis
- Autosomal recessive (AR) transmission.
- It is caused by homozygous or compound heterozygous mutation in the cystic fibrosis conductance regulator gene (CFTR) on chromosome 7.
- Patients can have pancreatic insufficiency, lung infections and increased levels of sweat chloride.
For more information about cystic fibrosis, click here.
Papillion-Lefèvre
- Autosomal recessive (AR) transmission.
- It is caused by homozygous or compound heterozygous mutation in the cathepsin C gene (CTSC) on chromosome 11.
- Patients present with palmoplantar keratoderma, periodontitis, and premature loss of dentition.[27]
- Acitretin if started at a early age can help patients have normal adult dentition.[28]
Localized juvenile periodontitis
- It is cause by a mutation in the FPR1 gene.
B-actin
- It is cause by a mutation in the ACTB gene.
- Patients usually develop mental retardation.
Leukocyte adhesion deficiency
- Autosomal recessive (AR) transmission.
- It results from a deficiency of the beta-2 integrin subunit of the leukocyte cell adhesion molecule, which results in poor neutrophil chemotaxis and phagocytosis.
- Patients develop recurrent infections, delay in umbilical cord seperation, and impaired pus formation.[29]
- The mainstay of treatment is HSCT and gene therapy.[30][31]
For more information about leukocyte adhesion deficiency, click here.
GATA2 def (MonoMac syndrome)
- Autosomal dominant (AD) transmission.[32]
- This syndrome is characterized by decreased or absent circulating monocytes, dendritic cells, natural killer cells, and B cells. Patients are at increased risk of developing severe or recurrent nontuberculous mycobacterial (NTM) infections, although opportunistic fungal infections and disseminated human papillomavirus (HPV) infections also occur.[33]
- Bone marrow transplant has shown success as the mode of treatment in some cases. [34]
Specific granule deficiency
- Autosomal recessive (AR) transmission.[35]
- It is cause by homozygous mutation in the CEBPE gene on chromosome 14.
- Neutrophils of these patients display atypical bilobed nuclei.
Pulmonary alveolar proteinosis
- Autosomal recessive (AR) transmission.[36]
- It is caused by homozygous mutation in the CSF2RB gene on chromosome 22.
- It is a rare lung disease characterized by the ineffective clearance of surfactant by alveolar macrophages causing respiratory failure.[37]
For more information about Pulmonary alveolar proteinosis, click here.
Chronic granulomatous disease (CGD)
- X-linked recessive transmission. However, it can also have autosomal recessive transmission in a few cases.[38]
- It results from an inability of the phagocytes to kill microbes that they have already ingested.
- Patients present with pneumonia, osteomyelitis and recurrent abscesses of the skin and organs.[39]
- For detailed information about Chronic granulomatous disease, click here.
Rac 2 deficiency
- It is caused by mutation in the RAC2 gene on chromosome 22.
- Patients present with severe infections and impaired wound healing.[40]
Glucose-6-phosphate dehydrogenase deficiency (G6PD) Class 1
- X-linked dominant (XLD) transmission.[41]
- It is caused by mutation in the G6PD gene on chromosome X causing decreased G6PD enzyme levels.
- Patients typically present with acute hemolytic anemia and neonatal jaundice.
- For detailed information about Glucose-6-phosphate dehydrogenase deficiency, click here.
References
- ↑ H. Ginzberg, J. Shin, L. Ellis, S. Goobie, J. Morrison, M. Corey, P. R. Durie & J. M. Rommens (2000). "Segregation analysis in Shwachman-Diamond syndrome: evidence for recessive inheritance". American journal of human genetics. 66 (4): 1413–1416. doi:10.1086/302856. PMID 10739765. Unknown parameter
|month=
ignored (help) - ↑ Ginzberg H, Shin J, Ellis L, Goobie S, Morrison J, Corey M, Durie PR, Rommens JM (April 2000). "Segregation analysis in Shwachman-Diamond syndrome: evidence for recessive inheritance". Am. J. Hum. Genet. 66 (4): 1413–6. doi:10.1086/302856. PMC 1288206. PMID 10739765.
- ↑ Yigal Dror & Melvin H. Freedman (2002). "Shwachman-diamond syndrome". British journal of haematology. 118 (3): 701–713. PMID 12181037. Unknown parameter
|month=
ignored (help) - ↑ N. B. Genieser, E. R. Halac, M. A. Greco & H. M. Richards (1982). "Shwachman-Bodian syndrome". Journal of computer assisted tomography. 6 (6): 1191–1192. PMID 7174939. Unknown parameter
|month=
ignored (help) - ↑ Kaan Boztug, Giridharan Appaswamy, Angel Ashikov, Alejandro A. Schaffer, Ulrich Salzer, Jana Diestelhorst, Manuela Germeshausen, Gudrun Brandes, Jacqueline Lee-Gossler, Fatih Noyan, Anna-Katherina Gatzke, Milen Minkov, Johann Greil, Christian Kratz, Theoni Petropoulou, Isabelle Pellier, Christine Bellanne-Chantelot, Nima Rezaei, Kirsten Monkemoller, Noha Irani-Hakimeh, Hans Bakker, Rita Gerardy-Schahn, Cornelia Zeidler, Bodo Grimbacher, Karl Welte & Christoph Klein (2009). "A syndrome with congenital neutropenia and mutations in G6PC3". The New England journal of medicine. 360 (1): 32–43. doi:10.1056/NEJMoa0805051. PMID 19118303. Unknown parameter
|month=
ignored (help) - ↑ Kure S, Suzuki Y, Matsubara Y, Sakamoto O, Shintaku H, Isshiki G, Hoshida C, Izumi I, Sakura N, Narisawa K (July 1998). "Molecular analysis of glycogen storage disease type Ib: identification of a prevalent mutation among Japanese patients and assignment of a putative glucose-6-phosphate translocase gene to chromosome 11". Biochem. Biophys. Res. Commun. 248 (2): 426–31. doi:10.1006/bbrc.1998.8985. PMID 9675154.
- ↑ T. Kuzuya, A. Matsuda, S. Yoshida, K. Narisawa, K. Tada, T. Saito & M. Matsushita (1983). "An adult case of type Ib glycogen-storage disease. Enzymatic and histochemical studies". The New England journal of medicine. 308 (10): 566–569. doi:10.1056/NEJM198303103081004. PMID 6298622. Unknown parameter
|month=
ignored (help) - ↑ S. Kivitie-Kallio & R. Norio (2001). "Cohen syndrome: essential features, natural history, and heterogeneity". American journal of medical genetics. 102 (2): 125–135. PMID 11477603. Unknown parameter
|month=
ignored (help) - ↑ P. G. Barth, H. R. Scholte, J. A. Berden, J. M. Van der Klei-Van Moorsel, I. E. Luyt-Houwen, E. T. Van 't Veer-Korthof, J. J. Van der Harten & M. A. Sobotka-Plojhar (1983). "An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes". Journal of the neurological sciences. 62 (1–3): 327–355. PMID 6142097. Unknown parameter
|month=
ignored (help) - ↑ R. P. Erickson (1999). "Southwestern Athabaskan (Navajo and Apache) genetic diseases". Genetics in medicine : official journal of the American College of Medical Genetics. 1 (4): 151–157. doi:10.1097/00125817-199905000-00007. PMID 11258351. Unknown parameter
|month=
ignored (help) - ↑ Thierry Vilboux, Atar Lev, May Christine V. Malicdan, Amos J. Simon, Paivi Jarvinen, Tomas Racek, Jacek Puchalka, Raman Sood, Blake Carrington, Kevin Bishop, James Mullikin, Marjan Huizing, Ben Zion Garty, Eran Eyal, Baruch Wolach, Ronit Gavrieli, Amos Toren, Michalle Soudack, Osama M. Atawneh, Tatiana Babushkin, Ginette Schiby, Andrew Cullinane, Camila Avivi, Sylvie Polak-Charcon, Iris Barshack, Ninette Amariglio, Gideon Rechavi, Jutte van der Werff ten Bosch, Yair Anikster, Christoph Klein, William A. Gahl & Raz Somech (2013). "A congenital neutrophil defect syndrome associated with mutations in VPS45". The New England journal of medicine. 369 (1): 54–65. doi:10.1056/NEJMoa1301296. PMID 23738510. Unknown parameter
|month=
ignored (help) - ↑ Georg Bohn, Anna Allroth, Gudrun Brandes, Jens Thiel, Erik Glocker, Alejandro A. Schaffer, Chozhavendan Rathinam, Nicole Taub, David Teis, Cornelia Zeidler, Ricardo A. Dewey, Robert Geffers, Jan Buer, Lukas A. Huber, Karl Welte, Bodo Grimbacher & Christoph Klein (2007). "A novel human primary immunodeficiency syndrome caused by deficiency of the endosomal adaptor protein p14". Nature medicine. 13 (1): 38–45. doi:10.1038/nm1528. PMID 17195838. Unknown parameter
|month=
ignored (help) - ↑ Kaan Boztug, Paivi M. Jarvinen, Elisabeth Salzer, Tomas Racek, Sebastian Monch, Wojciech Garncarz, E. Michael Gertz, Alejandro A. Schaffer, Aristotelis Antonopoulos, Stuart M. Haslam, Lena Schieck, Jacek Puchalka, Jana Diestelhorst, Giridharan Appaswamy, Brigitte Lescoeur, Roberto Giambruno, Johannes W. Bigenzahn, Ulrich Elling, Dietmar Pfeifer, Cecilia Dominguez Conde, Michael H. Albert, Karl Welte, Gudrun Brandes, Roya Sherkat, Jutte van der Werff Ten Bosch, Nima Rezaei, Amos Etzioni, Christine Bellanne-Chantelot, Giulio Superti-Furga, Josef M. Penninger, Keiryn L. Bennett, Julia von Blume, Anne Dell, Jean Donadieu & Christoph Klein (2014). "JAGN1 deficiency causes aberrant myeloid cell homeostasis and congenital neutropenia". Nature genetics. 46 (9): 1021–1027. doi:10.1038/ng.3069. PMID 25129144. Unknown parameter
|month=
ignored (help) - ↑ Saskia B. Wortmann, Szymon Zietkiewicz, Maria Kousi, Radek Szklarczyk, Tobias B. Haack, Soren W. Gersting, Ania C. Muntau, Aleksandar Rakovic, G. Herma Renkema, Richard J. Rodenburg, Tim M. Strom, Thomas Meitinger, M. Estela Rubio-Gozalbo, Elzbieta Chrusciel, Felix Distelmaier, Christelle Golzio, Joop H. Jansen, Clara van Karnebeek, Yolanda Lillquist, Thomas Lucke, Katrin Ounap, Riina Zordania, Joy Yaplito-Lee, Hans van Bokhoven, Johannes N. Spelbrink, Frederic M. Vaz, Mia Pras-Raves, Rafal Ploski, Ewa Pronicka, Christine Klein, Michel A. A. P. Willemsen, Arjan P. M. de Brouwer, Holger Prokisch, Nicholas Katsanis & Ron A. Wevers (2015). "CLPB mutations cause 3-methylglutaconic aciduria, progressive brain atrophy, intellectual disability, congenital neutropenia, cataracts, movement disorder". American journal of human genetics. 96 (2): 245–257. doi:10.1016/j.ajhg.2014.12.013. PMID 25597510. Unknown parameter
|month=
ignored (help) - ↑ Maximilian Witzel, Daniel Petersheim, Yanxin Fan, Ehsan Bahrami, Tomas Racek, Meino Rohlfs, Jacek Puchalka, Christian Mertes, Julien Gagneur, Christoph Ziegenhain, Wolfgang Enard, Asbjorg Stray-Pedersen, Peter D. Arkwright, Miguel R. Abboud, Vahid Pazhakh, Graham J. Lieschke, Peter M. Krawitz, Maik Dahlhoff, Marlon R. Schneider, Eckhard Wolf, Hans-Peter Horny, Heinrich Schmidt, Alejandro A. Schaffer & Christoph Klein (2017). "Chromatin-remodeling factor SMARCD2 regulates transcriptional networks controlling differentiation of neutrophil granulocytes". Nature genetics. 49 (5): 742–752. doi:10.1038/ng.3833. PMID 28369036. Unknown parameter
|month=
ignored (help) - ↑ H. Z. Ring, V. Vameghi-Meyers, W. Wang, G. R. Crabtree & U. Francke (1998). "Five SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin (SMARC) genes are dispersed in the human genome". Genomics. 51 (1): 140–143. doi:10.1006/geno.1998.5343. PMID 9693044. Unknown parameter
|month=
ignored (help) - ↑ H. J. Adler, R. S. Winnicki, T. W. Gong & M. I. Lomax (1999). "A gene upregulated in the acoustically damaged chick basilar papilla encodes a novel WD40 repeat protein". Genomics. 56 (1): 59–69. doi:10.1006/geno.1998.5672. PMID 10036186. Unknown parameter
|month=
ignored (help) - ↑ Douglas B. Kuhns, Danielle L. Fink, Uimook Choi, Colin Sweeney, Karen Lau, Debra Long Priel, Dara Riva, Laura Mendez, Gulbu Uzel, Alexandra F. Freeman, Kenneth N. Olivier, Victoria L. Anderson, Robin Currens, Vanessa Mackley, Allison Kang, Mehdi Al-Adeli, Emily Mace, Jordan S. Orange, Elizabeth Kang, Stephen J. Lockett, De Chen, Peter J. Steinbach, Amy P. Hsu, Kol A. Zarember, Harry L. Malech, John I. Gallin & Steven M. Holland (2016). "Cytoskeletal abnormalities and neutrophil dysfunction in WDR1 deficiency". Blood. 128 (17): 2135–2143. doi:10.1182/blood-2016-03-706028. PMID 27557945. Unknown parameter
|month=
ignored (help) - ↑ Julia Skokowa, Manuela Germeshausen, Cornelia Zeidler & Karl Welte (2007). "Severe congenital neutropenia: inheritance and pathophysiology". Current opinion in hematology. 14 (1): 22–28. PMID 17133096. Unknown parameter
|month=
ignored (help) - ↑ H. W. Peng, C. F. Chou & D. C. Liang (2000). "Hereditary cyclic neutropenia in the male members of a Chinese family with inverted Y chromosome". British journal of haematology. 110 (2): 438–440. PMID 10971405. Unknown parameter
|month=
ignored (help) - ↑ S. E. Palmer, K. Stephens & D. C. Dale (1996). "Genetics, phenotype, and natural history of autosomal dominant cyclic hematopoiesis". American journal of medical genetics. 66 (4): 413–422. doi:10.1002/(SICI)1096-8628(19961230)66:4<413::AID-AJMG5>3.0.CO;2-L. PMID 8989458. Unknown parameter
|month=
ignored (help) - ↑ Manuela Germeshausen, Magda Grudzien, Cornelia Zeidler, Hengameh Abdollahpour, Sevgi Yetgin, Nima Rezaei, Matthias Ballmaier, Bodo Grimbacher, Karl Welte & Christoph Klein (2008). "Novel HAX1 mutations in patients with severe congenital neutropenia reveal isoform-dependent genotype-phenotype associations". Blood. 111 (10): 4954–4957. doi:10.1182/blood-2007-11-120667. PMID 18337561. Unknown parameter
|month=
ignored (help) - ↑ Manuela Germeshausen, Magda Grudzien, Cornelia Zeidler, Hengameh Abdollahpour, Sevgi Yetgin, Nima Rezaei, Matthias Ballmaier, Bodo Grimbacher, Karl Welte & Christoph Klein (2008). "Novel HAX1 mutations in patients with severe congenital neutropenia reveal isoform-dependent genotype-phenotype associations". Blood. 111 (10): 4954–4957. doi:10.1182/blood-2007-11-120667. PMID 18337561. Unknown parameter
|month=
ignored (help) - ↑ K. Devriendt, A. S. Kim, G. Mathijs, S. G. Frints, M. Schwartz, J. J. Van Den Oord, G. E. Verhoef, M. A. Boogaerts, J. P. Fryns, D. You, M. K. Rosen & P. Vandenberghe (2001). "Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia". Nature genetics. 27 (3): 313–317. doi:10.1038/85886. PMID 11242115. Unknown parameter
|month=
ignored (help) - ↑ Alexa Triot, Paivi M. Jarvinen, Juan I. Arostegui, Dhaarini Murugan, Naschla Kohistani, Jose Luis Dapena Diaz, Tomas Racek, Jacek Puchalka, E. Michael Gertz, Alejandro A. Schaffer, Daniel Kotlarz, Dietmar Pfeifer, Cristina Diaz de Heredia Rubio, Mehmet Akif Ozdemir, Turkan Patiroglu, Musa Karakukcu, Jose Sanchez de Toledo Codina, Jordi Yague, Ivo P. Touw, Ekrem Unal & Christoph Klein (2014). "Inherited biallelic CSF3R mutations in severe congenital neutropenia". Blood. 123 (24): 3811–3817. doi:10.1182/blood-2013-11-535419. PMID 24753537. Unknown parameter
|month=
ignored (help) - ↑ T. Nagase, R. Kikuno, K. I. Ishikawa, M. Hirosawa & O. Ohara (2000). "Prediction of the coding sequences of unidentified human genes. XVI. The complete sequences of 150 new cDNA clones from brain which code for large proteins in vitro". DNA research : an international journal for rapid publication of reports on genes and genomes. 7 (1): 65–73. PMID 10718198. Unknown parameter
|month=
ignored (help) - ↑ C. Lefevre, C. Blanchet-Bardon, F. Jobard, B. Bouadjar, J. F. Stalder, S. Cure, A. Hoffmann, J. F. Prud'Homme & J. Fischer (2001). "Novel point mutations, deletions, and polymorphisms in the cathepsin C gene in nine families from Europe and North Africa with Papillon-Lefevre syndrome". The Journal of investigative dermatology. 117 (6): 1657–1661. doi:10.1046/j.0022-202x.2001.01595.x. PMID 11886537. Unknown parameter
|month=
ignored (help) - ↑ V. Nazzaro, C. Blanchet-Bardon, C. Mimoz, J. Revuz & A. Puissant (1988). "Papillon-Lefevre syndrome. Ultrastructural study and successful treatment with acitretin". Archives of dermatology. 124 (4): 533–539. PMID 2965550. Unknown parameter
|month=
ignored (help) - ↑ A. R. Hayward, B. A. Harvey, J. Leonard, M. C. Greenwood, C. B. Wood & J. F. Soothill (1979). "Delayed separation of the umbilical cord, widespread infections, and defective neutrophil mobility". Lancet (London, England). 1 (8126): 1099–1101. PMID 86829. Unknown parameter
|month=
ignored (help) - ↑ A. Fischer, C. Griscelli, W. Friedrich, B. Kubanek, R. Levinsky, G. Morgan, J. Vossen, G. Wagemaker & P. Landais (1986). "Bone-marrow transplantation for immunodeficiencies and osteopetrosis: European survey, 1968-1985". Lancet (London, England). 2 (8515): 1080–1084. PMID 2877234. Unknown parameter
|month=
ignored (help) - ↑ J. M. Wilson, A. J. Ping, J. C. Krauss, L. Mayo-Bond, C. E. Rogers, D. C. Anderson & R. F. Todd (1990). "Correction of CD18-deficient lymphocytes by retrovirus-mediated gene transfer". Science (New York, N.Y.). 248 (4961): 1413–1416. PMID 1972597. Unknown parameter
|month=
ignored (help) - ↑ Donald C. Vinh, Smita Y. Patel, Gulbu Uzel, Victoria L. Anderson, Alexandra F. Freeman, Kenneth N. Olivier, Christine Spalding, Stephen Hughes, Stefania Pittaluga, Mark Raffeld, Lynn R. Sorbara, Houda Z. Elloumi, Douglas B. Kuhns, Maria L. Turner, Edward W. Cowen, Danielle Fink, Debra Long-Priel, Amy P. Hsu, Li Ding, Michelle L. Paulson, Adeline R. Whitney, Elizabeth P. Sampaio, David M. Frucht, Frank R. DeLeo & Steven M. Holland (2010). "Autosomal dominant and sporadic monocytopenia with susceptibility to mycobacteria, fungi, papillomaviruses, and myelodysplasia". Blood. 115 (8): 1519–1529. doi:10.1182/blood-2009-03-208629. PMID 20040766. Unknown parameter
|month=
ignored (help) - ↑ Venetia Bigley, Muzlifah Haniffa, Sergei Doulatov, Xiao-Nong Wang, Rachel Dickinson, Naomi McGovern, Laura Jardine, Sarah Pagan, Ian Dimmick, Ignatius Chua, Jonathan Wallis, Jim Lordan, Cliff Morgan, Dinakantha S. Kumararatne, Rainer Doffinger, Mirjam van der Burg, Jacques van Dongen, Andrew Cant, John E. Dick, Sophie Hambleton & Matthew Collin (2011). "The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency". The Journal of experimental medicine. 208 (2): 227–234. doi:10.1084/jem.20101459. PMID 21242295. Unknown parameter
|month=
ignored (help) - ↑ Jennifer Cuellar-Rodriguez, Juan Gea-Banacloche, Alexandra F. Freeman, Amy P. Hsu, Christa S. Zerbe, Katherine R. Calvo, Jennifer Wilder, Roger Kurlander, Kenneth N. Olivier, Steven M. Holland & Dennis D. Hickstein (2011). "Successful allogeneic hematopoietic stem cell transplantation for GATA2 deficiency". Blood. 118 (13): 3715–3720. doi:10.1182/blood-2011-06-365049. PMID 21816832. Unknown parameter
|month=
ignored (help) - ↑ A. F. Gombart, M. Shiohara, S. H. Kwok, K. Agematsu, A. Komiyama & H. P. Koeffler (2001). "Neutrophil-specific granule deficiency: homozygous recessive inheritance of a frameshift mutation in the gene encoding transcription factor CCAAT/enhancer binding protein--epsilon". Blood. 97 (9): 2561–2567. PMID 11313242. Unknown parameter
|month=
ignored (help) - ↑ T. Suzuki, B. Maranda, T. Sakagami, P. Catellier, C.-Y. Couture, B. C. Carey, C. Chalk & B. C. Trapnell (2011). "Hereditary pulmonary alveolar proteinosis caused by recessive CSF2RB mutations". The European respiratory journal. 37 (1): 201–204. doi:10.1183/09031936.00090610. PMID 21205713. Unknown parameter
|month=
ignored (help) - ↑ Sara R. Greenhill & Darrell N. Kotton (2009). "Pulmonary alveolar proteinosis: a bench-to-bedside story of granulocyte-macrophage colony-stimulating factor dysfunction". Chest. 136 (2): 571–577. doi:10.1378/chest.08-2943. PMID 19666756. Unknown parameter
|month=
ignored (help) - ↑ D. B. Windhorst & J. F. Soothill (1969). "Inheritance of chronic granulomatous disease". Lancet (London, England). 2 (7619): 543–544. PMID 4184856. Unknown parameter
|month=
ignored (help) - ↑ R. B. Jr Johnston (2001). "Clinical aspects of chronic granulomatous disease". Current opinion in hematology. 8 (1): 17–22. PMID 11138621. Unknown parameter
|month=
ignored (help) - ↑ D. R. Ambruso, C. Knall, A. N. Abell, J. Panepinto, A. Kurkchubasche, G. Thurman, C. Gonzalez-Aller, A. Hiester, M. deBoer, R. J. Harbeck, R. Oyer, G. L. Johnson & D. Roos (2000). "Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation". Proceedings of the National Academy of Sciences of the United States of America. 97 (9): 4654–4659. doi:10.1073/pnas.080074897. PMID 10758162. Unknown parameter
|month=
ignored (help) - ↑ Lucio Luzzatto & Paolo Arese (2018). "Favism and Glucose-6-Phosphate Dehydrogenase Deficiency". The New England journal of medicine. 378 (1): 60–71. PMID 29298156. Unknown parameter
|month=
ignored (help)