Ventilation-perfusion mismatch pathophysiology: Difference between revisions
Line 2: | Line 2: | ||
{{Ventilation-perfusion mismatch}} | {{Ventilation-perfusion mismatch}} | ||
{{CMG}}; {{AE}}{{AIDA}} | {{CMG}}; {{AE}}{{AIDA}} | ||
==Overview== | ==Overview== | ||
Any discrepancy between blood flow and [[ventilation]] is called V/Q mismatch. | Any discrepancy between pulmonary blood flow and [[ventilation]] is called V/Q mismatch. Ideally [[Ventilation (physiology)|ventilation]] and [[perfusion]] should be equal with a V/Q ratio of 1, but the normal lung varies due to a higher perfusion at the [[Base of lung|base of the lung]] compared to the [[Apex of lung|apex of the lung]]. This causes a higher V/Q ratio at the apex compared to the base. The average V/Q ratio in a normal lung is about 0.8, with about 4 liters of oxygen and 5 liters of blood entering the lung per minute. Diseased lung can cause a V/Q mismatch due to decreased blood flow or oxygenation. This results in [[hypoxemia]], and there are many causes of it. | ||
==Pathogenesis== | ==Pathogenesis== | ||
V/Q mismatch is one of the most common reasons of hypoxemia in patients with [[lung]] diseases like [[Obstructive lung disease|obstructive lung]] diseases, pulmonary vascular diseases, and [[Interstitial lung disease|interstitial diseases]] . An increased V/Q mismatch is caused by a decrease in blood flow to the lung, for example a [[pulmonary embolism]]. A decreased V/Q mismatch is caused by a decrease in ventilation or an airway obstruction, for example [[Asthma]]. A V/Q mismatch due to a perfusion defect will improve with 100% [[Oxygen therapy|oxygen therapy.]] | |||
In normal condition when there is a low ventilation, the body tries to keep this ratio in a normal range by restricting the perfusion in that specific area of the lung. This unique mechanism is called hypoxic pulmonary vasoconstriction. If this process continues for a long time it can cause pulmonary hypertension . | In normal condition when there is a low ventilation, the body tries to keep this ratio in a normal range by restricting the perfusion in that specific area of the lung. This unique mechanism is called hypoxic pulmonary vasoconstriction. If this process continues for a long time it can cause pulmonary hypertension . |
Revision as of 17:01, 13 November 2018
Template:Ventilation-perfusion mismatch
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Aida Javanbakht, M.D.
Overview
Any discrepancy between pulmonary blood flow and ventilation is called V/Q mismatch. Ideally ventilation and perfusion should be equal with a V/Q ratio of 1, but the normal lung varies due to a higher perfusion at the base of the lung compared to the apex of the lung. This causes a higher V/Q ratio at the apex compared to the base. The average V/Q ratio in a normal lung is about 0.8, with about 4 liters of oxygen and 5 liters of blood entering the lung per minute. Diseased lung can cause a V/Q mismatch due to decreased blood flow or oxygenation. This results in hypoxemia, and there are many causes of it.
Pathogenesis
V/Q mismatch is one of the most common reasons of hypoxemia in patients with lung diseases like obstructive lung diseases, pulmonary vascular diseases, and interstitial diseases . An increased V/Q mismatch is caused by a decrease in blood flow to the lung, for example a pulmonary embolism. A decreased V/Q mismatch is caused by a decrease in ventilation or an airway obstruction, for example Asthma. A V/Q mismatch due to a perfusion defect will improve with 100% oxygen therapy.
In normal condition when there is a low ventilation, the body tries to keep this ratio in a normal range by restricting the perfusion in that specific area of the lung. This unique mechanism is called hypoxic pulmonary vasoconstriction. If this process continues for a long time it can cause pulmonary hypertension .
Associated Conditions
Some conditions that cause decrease in V/Q are:
Some conditions that cause increase in V/Q are:
Genetics
The association between V/Q mismatch and genetic depends on the etiology of the mismatch. For example ORMDL3 and GSDML genes play a role in causing asthma .
Gross Pathology
The gross pathology depends on the exact reason for the V/Q mismatch.
Microscopic Pathology
The microscopic pathology depends on the exact reason for the V/Q mismatch. For example in asthma there are extracellular Charcot-Leyden crystals and increased mucosal goblet cells.