PEX6: Difference between revisions

Jump to navigation Jump to search
imported>Ira Leviton
imported>Citation bot
m Removed parameters. | You can use this bot yourself. Report bugs here. | User-activated.
 
Line 3: Line 3:


== Function ==
== Function ==
From yeast to plants to humans, there is only one verified function of PEX6; PEX6 (and PEX1) removes [[PEX5]] from the peroxisomal membrane so that PEX5 may do additional rounds of peroxisomal import. Human PEX6 can genetically complement plant ''pex6'' mutants, which highlights functional conservation.<ref>{{cite journal | vauthors = Zolman BK, Bartel B | title = An Arabidopsis indole-3-butyric acid-response mutant defective in PEROXIN6, an apparent ATPase implicated in peroxisomal function | language = en | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 101 | issue = 6 | pages = 1786–91 | date = February 2004 | pmid = 14745029 | doi = 10.1073/pnas.0304368101 | url = http://www.pnas.org/content/101/6/1786 | pmc=341854}}</ref> Work with ''pex6'' mutants in ''[[Arabidopsis thaliana]]'' has shown that PEX6 may have a role in consuming [[oil body]] (plant-specific [[Lipid droplet|lipid droplets]]).<ref>{{cite journal | vauthors = Gonzalez KL, Fleming WA, Kao YT, Wright ZJ, Venkova SV, Ventura MJ, Bartel B | title = Disparate peroxisome-related defects in Arabidopsis pex6 and pex26 mutants link peroxisomal retrotranslocation and oil body utilization | language = en | journal = The Plant Journal | volume = 92 | issue = 1 | pages = 110–128 | date = October 2017 | pmid = 28742939 | doi = 10.1111/tpj.13641 | url = http://onlinelibrary.wiley.com/doi/10.1111/tpj.13641/abstract | pmc=5605450}}</ref> Work with yeast ''pex6'' mutants has shown that PEX6 is a key player in the [[autophagy]] of peroxisomes called pexophagy.<ref>{{cite journal | vauthors = Nuttall JM, Motley AM, Hettema EH | title = Deficiency of the exportomer components Pex1, Pex6, and Pex15 causes enhanced pexophagy in Saccharomyces cerevisiae | journal = Autophagy | volume = 10 | issue = 5 | pages = 835–45 | date = May 2014 | pmid = 24657987 | doi = 10.4161/auto.28259 | url = https://dx.doi.org/10.4161/auto.28259 | pmc=5119063}}</ref>
From yeast to plants to humans, there is only one verified function of PEX6; PEX6 (and PEX1) removes [[PEX5]] from the peroxisomal membrane so that PEX5 may do additional rounds of peroxisomal import. Human PEX6 can genetically complement plant ''pex6'' mutants, which highlights functional conservation.<ref>{{cite journal | vauthors = Zolman BK, Bartel B | title = An Arabidopsis indole-3-butyric acid-response mutant defective in PEROXIN6, an apparent ATPase implicated in peroxisomal function | language = en | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 101 | issue = 6 | pages = 1786–91 | date = February 2004 | pmid = 14745029 | doi = 10.1073/pnas.0304368101 | url = http://www.pnas.org/content/101/6/1786 | pmc=341854}}</ref> Work with ''pex6'' mutants in ''[[Arabidopsis thaliana]]'' has shown that PEX6 may have a role in consuming [[oil body]] (plant-specific [[Lipid droplet|lipid droplets]]).<ref>{{cite journal | vauthors = Gonzalez KL, Fleming WA, Kao YT, Wright ZJ, Venkova SV, Ventura MJ, Bartel B | title = Disparate peroxisome-related defects in Arabidopsis pex6 and pex26 mutants link peroxisomal retrotranslocation and oil body utilization | language = en | journal = The Plant Journal | volume = 92 | issue = 1 | pages = 110–128 | date = October 2017 | pmid = 28742939 | doi = 10.1111/tpj.13641 | pmc=5605450}}</ref> Work with yeast ''pex6'' mutants has shown that PEX6 is a key player in the [[autophagy]] of peroxisomes called pexophagy.<ref>{{cite journal | vauthors = Nuttall JM, Motley AM, Hettema EH | title = Deficiency of the exportomer components Pex1, Pex6, and Pex15 causes enhanced pexophagy in Saccharomyces cerevisiae | journal = Autophagy | volume = 10 | issue = 5 | pages = 835–45 | date = May 2014 | pmid = 24657987 | doi = 10.4161/auto.28259 | pmc=5119063}}</ref>


== Related diseases ==
== Related diseases ==
Mutations in the genes encoding PEX6, along with PEX1, are the leading causes of peroxisomal biogenesis disorders<ref>{{cite journal | vauthors = Waterham HR, Ebberink MS | title = Genetics and molecular basis of human peroxisome biogenesis disorders | journal = Biochimica et Biophysica Acta | volume = 1822 | issue = 9 | pages = 1430–41 | date = September 2012 | pmid = 22871920 | doi = 10.1016/j.bbadis.2012.04.006 | url = https://doi.org/10.1016/j.bbadis.2012.04.006 }}</ref>, such as [[Zellweger syndrome|Zellweger Syndrome]] spectrum, [[infantile Refsum disease]], and [[neonatal adrenoleukodystrophy]]. These genetic diseases are [[Autosomal Recessive|autosomal recessive]] and occur in 1 of every 50,000 births.<ref>{{cite journal | vauthors = Braverman NE, Raymond GV, Rizzo WB, Moser AB, Wilkinson ME, Stone EM, Steinberg SJ, Wangler MF, Rush ET, Hacia JG, Bose M | title = Peroxisome biogenesis disorders in the Zellweger spectrum: An overview of current diagnosis, clinical manifestations, and treatment guidelines | journal = Molecular Genetics and Metabolism | volume = 117 | issue = 3 | pages = 313–21 | date = March 2016 | pmid = 26750748 | doi = 10.1016/j.ymgme.2015.12.009 | url = http://linkinghub.elsevier.com/retrieve/pii/S1096719215300937 | pmc=5214431}}</ref>
Mutations in the genes encoding PEX6, along with PEX1, are the leading causes of peroxisomal biogenesis disorders<ref>{{cite journal | vauthors = Waterham HR, Ebberink MS | title = Genetics and molecular basis of human peroxisome biogenesis disorders | journal = Biochimica et Biophysica Acta | volume = 1822 | issue = 9 | pages = 1430–41 | date = September 2012 | pmid = 22871920 | doi = 10.1016/j.bbadis.2012.04.006 }}</ref>, such as [[Zellweger syndrome|Zellweger Syndrome]] spectrum, [[infantile Refsum disease]], and [[neonatal adrenoleukodystrophy]]. These genetic diseases are [[Autosomal Recessive|autosomal recessive]] and occur in 1 of every 50,000 births.<ref>{{cite journal | vauthors = Braverman NE, Raymond GV, Rizzo WB, Moser AB, Wilkinson ME, Stone EM, Steinberg SJ, Wangler MF, Rush ET, Hacia JG, Bose M | title = Peroxisome biogenesis disorders in the Zellweger spectrum: An overview of current diagnosis, clinical manifestations, and treatment guidelines | journal = Molecular Genetics and Metabolism | volume = 117 | issue = 3 | pages = 313–21 | date = March 2016 | pmid = 26750748 | doi = 10.1016/j.ymgme.2015.12.009 | url = http://linkinghub.elsevier.com/retrieve/pii/S1096719215300937 | pmc=5214431}}</ref>


== References ==
== References ==

Latest revision as of 07:58, 10 January 2019

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Peroxisome assembly factor 2 is a protein that in humans is encoded by the PEX6 gene.[1][2] PEX6 is an AAA ATPase that localizes to the peroxisome. PEX6 forms a hexamer with PEX1[3][4] and is recruited to the membrane by PEX26.[5]

Function

From yeast to plants to humans, there is only one verified function of PEX6; PEX6 (and PEX1) removes PEX5 from the peroxisomal membrane so that PEX5 may do additional rounds of peroxisomal import. Human PEX6 can genetically complement plant pex6 mutants, which highlights functional conservation.[6] Work with pex6 mutants in Arabidopsis thaliana has shown that PEX6 may have a role in consuming oil body (plant-specific lipid droplets).[7] Work with yeast pex6 mutants has shown that PEX6 is a key player in the autophagy of peroxisomes called pexophagy.[8]

Related diseases

Mutations in the genes encoding PEX6, along with PEX1, are the leading causes of peroxisomal biogenesis disorders[9], such as Zellweger Syndrome spectrum, infantile Refsum disease, and neonatal adrenoleukodystrophy. These genetic diseases are autosomal recessive and occur in 1 of every 50,000 births.[10]

References

  1. Yahraus T, Braverman N, Dodt G, Kalish JE, Morrell JC, Moser HW, Valle D, Gould SJ (June 1996). "The peroxisome biogenesis disorder group 4 gene, PXAAA1, encodes a cytoplasmic ATPase required for stability of the PTS1 receptor". The EMBO Journal. 15 (12): 2914–23. PMC 450231. PMID 8670792.
  2. "Entrez Gene: PEX6 peroxisomal biogenesis factor 6".
  3. Tamura S, Shimozawa N, Suzuki Y, Tsukamoto T, Osumi T, Fujiki Y (April 1998). "A cytoplasmic AAA family peroxin, Pex1p, interacts with Pex6p". Biochemical and Biophysical Research Communications. 245 (3): 883–6. doi:10.1006/bbrc.1998.8522. PMID 9588209.
  4. Gardner BM, Chowdhury S, Lander GC, Martin A (March 2015). "The Pex1/Pex6 complex is a heterohexameric AAA+ motor with alternating and highly coordinated subunits". Journal of Molecular Biology. 427 (6 Pt B): 1375–88. doi:10.1016/j.jmb.2015.01.019. PMC 4355278. PMID 25659908.
  5. Matsumoto N, Tamura S, Fujiki Y (May 2003). "The pathogenic peroxin Pex26p recruits the Pex1p-Pex6p AAA ATPase complexes to peroxisomes". Nature Cell Biology. 5 (5): 454–60. doi:10.1038/ncb982. PMID 12717447.
  6. Zolman BK, Bartel B (February 2004). "An Arabidopsis indole-3-butyric acid-response mutant defective in PEROXIN6, an apparent ATPase implicated in peroxisomal function". Proceedings of the National Academy of Sciences of the United States of America. 101 (6): 1786–91. doi:10.1073/pnas.0304368101. PMC 341854. PMID 14745029.
  7. Gonzalez KL, Fleming WA, Kao YT, Wright ZJ, Venkova SV, Ventura MJ, Bartel B (October 2017). "Disparate peroxisome-related defects in Arabidopsis pex6 and pex26 mutants link peroxisomal retrotranslocation and oil body utilization". The Plant Journal. 92 (1): 110–128. doi:10.1111/tpj.13641. PMC 5605450. PMID 28742939.
  8. Nuttall JM, Motley AM, Hettema EH (May 2014). "Deficiency of the exportomer components Pex1, Pex6, and Pex15 causes enhanced pexophagy in Saccharomyces cerevisiae". Autophagy. 10 (5): 835–45. doi:10.4161/auto.28259. PMC 5119063. PMID 24657987.
  9. Waterham HR, Ebberink MS (September 2012). "Genetics and molecular basis of human peroxisome biogenesis disorders". Biochimica et Biophysica Acta. 1822 (9): 1430–41. doi:10.1016/j.bbadis.2012.04.006. PMID 22871920.
  10. Braverman NE, Raymond GV, Rizzo WB, Moser AB, Wilkinson ME, Stone EM, Steinberg SJ, Wangler MF, Rush ET, Hacia JG, Bose M (March 2016). "Peroxisome biogenesis disorders in the Zellweger spectrum: An overview of current diagnosis, clinical manifestations, and treatment guidelines". Molecular Genetics and Metabolism. 117 (3): 313–21. doi:10.1016/j.ymgme.2015.12.009. PMC 5214431. PMID 26750748.

Further reading

External links