Cowden syndrome pathophysiology: Difference between revisions
Line 72: | Line 72: | ||
==Microscopic Pathology== | ==Microscopic Pathology== | ||
On [[microscopic]] [[histopathological]] analysis, non [[Dysplasia|dysplastic]] [[epithelium]], dilated [[glands]], expanded [[stroma]] are characteristic findings of [[cowden syndrome]]. | On [[microscopic]] [[histopathological]] analysis, non [[Dysplasia|dysplastic]] [[epithelium]], dilated [[glands]], expanded [[stroma]] are characteristic findings of [[colon polyps]] in [[cowden syndrome]]. | ||
==References== | ==References== |
Revision as of 17:18, 19 February 2019
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Vamsikrishna Gunnam M.B.B.S [2]
Overview
The exact pathogenesis of [disease name] is not fully understood.
OR
It is thought that cowden syndrome is the result caused by phosphatase and tensin homolog (PTEN) gene mutations. Cowden syndrome follows autosomal dominant pattern of inheritance.
OR
[Pathogen name] is usually transmitted via the [transmission route] route to the human host.
OR
Following transmission/ingestion, the [pathogen] uses the [entry site] to invade the [cell name] cell.
OR
[Disease or malignancy name] arises from [cell name]s, which are [cell type] cells that are normally involved in [function of cells].
OR
The progression to [disease name] usually involves the [molecular pathway].
OR
The pathophysiology of [disease/malignancy] depends on the histological subtype.
Pathophysiology
Physiology
The normal physiology of [name of process] can be understood as follows:
Pathogenesis
- The exact pathogenesis of [disease name] is not completely understood.
OR
- It is understood that [disease name] is the result of / is mediated by / is produced by / is caused by either [hypothesis 1], [hypothesis 2], or [hypothesis 3].
- [Pathogen name] is usually transmitted via the [transmission route] route to the human host.
- Following transmission/ingestion, the [pathogen] uses the [entry site] to invade the [cell name] cell.
- [Disease or malignancy name] arises from [cell name]s, which are [cell type] cells that are normally involved in [function of cells].
- The progression to [disease name] usually involves the [molecular pathway].
- The pathophysiology of [disease/malignancy] depends on the histological subtype.
Genetics
- Cowden syndrome is transmitted in autosomal dominant pattern.[1]
- Genes involved in the pathogenesis of cowden syndromeinclude:[2]
- Mutations in the PTEN gene leads to oncogenesis, and somatic mutations
- Phosphatase and tensin homolog (PTEN) gene plays an important role in the following:[3]
- Phosphoinositide-3-kinase (PI3K)-AKT pathway and
- Rapamycin (mTOR) signaling pathways
- PTEN track backs to 10q23 which encodes and plays a significant role in the following:[4][5][6]
- Effects G1 cell cycle arrest and apoptosis
- Cellular proliferation and
- Migration
- Apoptosis
Associated Conditions
Conditions associated with [disease name] include:
- [Condition 1]
- [Condition 2]
- [Condition 3]
Gross Pathology
On gross pathology, [feature1], [feature2], and [feature3] are characteristic findings of [disease name].
Microscopic Pathology
On microscopic histopathological analysis, non dysplastic epithelium, dilated glands, expanded stroma are characteristic findings of colon polyps in cowden syndrome.
References
- ↑ Eng, C. (2000). "Will the real Cowden syndrome please stand up: revised diagnostic criteria". Journal of Medical Genetics. 37 (11): 828–830. doi:10.1136/jmg.37.11.828. ISSN 1468-6244.
- ↑ Pilarski, R.; Burt, R.; Kohlman, W.; Pho, L.; Shannon, K. M.; Swisher, E. (2013). "Cowden Syndrome and the PTEN Hamartoma Tumor Syndrome: Systematic Review and Revised Diagnostic Criteria". JNCI Journal of the National Cancer Institute. 105 (21): 1607–1616. doi:10.1093/jnci/djt277. ISSN 0027-8874.
- ↑ Sansal I, Sellers WR (July 2004). "The biology and clinical relevance of the PTEN tumor suppressor pathway". J. Clin. Oncol. 22 (14): 2954–63. doi:10.1200/JCO.2004.02.141. PMID 15254063.
- ↑ Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, Ruland J, Penninger JM, Siderovski DP, Mak TW (October 1998). "Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN". Cell. 95 (1): 29–39. PMID 9778245.
- ↑ Nelen MR, Padberg GW, Peeters EA, Lin AY, van den Helm B, Frants RR, Coulon V, Goldstein AM, van Reen MM, Easton DF, Eeles RA, Hodgsen S, Mulvihill JJ, Murday VA, Tucker MA, Mariman EC, Starink TM, Ponder BA, Ropers HH, Kremer H, Longy M, Eng C (May 1996). "Localization of the gene for Cowden disease to chromosome 10q22-23". Nat. Genet. 13 (1): 114–6. doi:10.1038/ng0596-114. PMID 8673088.
- ↑ Keniry M, Parsons R (September 2008). "The role of PTEN signaling perturbations in cancer and in targeted therapy". Oncogene. 27 (41): 5477–85. doi:10.1038/onc.2008.248. PMID 18794882.