Percutaneous coronary intervention overview: Difference between revisions
No edit summary |
|||
Line 22: | Line 22: | ||
== Pharmacotherapy to Support PCI == | == Pharmacotherapy to Support PCI == | ||
2011 AHA guidelines recommend the use of antiplatelet therapy [[aspirin]] ''([[ACC AHA guidelines classification scheme#Level%20of%20Evidence|Level of Evidence: B]])'' and [[Antiplatelet drug|P2Y12 receptor inhibitor]] ([[clopidogrel]], [[prasugrel]] and [[ticagrelor]]) ''([[ACC AHA guidelines classification scheme#Level%20of%20Evidence|Level of Evidence: A]])'' to support PCI in patients with ACS. Few randomised trials have been conducted showing comparison of clopidogrel with aspirin and other P2Y12 inhibitors (prasugrel and ticagrelor) in terms of clinical benefit and risk of bleeding when given in patients undergoing PCI. However, there is limited data comparing new P2Y12 receptor inhibitors (prasugrel and ticagrelor) for downstream and upstream therapy in patients undergoing PCI with non ST elevation MI in terms of clinical benefit and adverse effects. Hence, a new large scale randomised open label trial called DUBIUS is in process in Italy comparing two new P2Y12 inhibitors prasugrel and ticagrelor for pretreatment in patients with non ST elevation MI undergoing PCI. | 2011 AHA guidelines recommend the use of antiplatelet therapy [[aspirin]] ''([[ACC AHA guidelines classification scheme#Level%20of%20Evidence|Level of Evidence: B]])'' and [[Antiplatelet drug|P2Y12 receptor inhibitor]] ([[clopidogrel]], [[prasugrel]] and [[ticagrelor]]) ''([[ACC AHA guidelines classification scheme#Level%20of%20Evidence|Level of Evidence: A]])'' to support PCI in patients with ACS. Few randomised trials have been conducted showing comparison of clopidogrel with aspirin and other P2Y12 inhibitors (prasugrel and ticagrelor) in terms of clinical benefit and risk of bleeding when given in patients undergoing PCI. However, there is limited data comparing new P2Y12 receptor inhibitors (prasugrel and ticagrelor) for downstream and upstream therapy in patients undergoing PCI with non ST elevation MI in terms of clinical benefit and adverse effects. Hence, a new large scale randomised open label trial called DUBIUS is in process in Italy comparing two new P2Y12 inhibitors prasugrel and ticagrelor for pretreatment in patients with non ST elevation MI undergoing PCI. | ||
== Vascular Closure Devices == | |||
At the very heart of any successful [[endovascular]] procedure is successful [[arterial]] entry and exit. The first successful [[cardiac catheterization]], according to Andre Cournand, was performed on an equine patient in 1844 utilizing a retrograde approach through both the [[jugular vein]] and [[carotid artery]]. Human retrograde [[left heart catheterization]] was first reported by Zimmerman and Limon-Lason in 1950. Shortly thereafter in 1953, Seldinger developed the [[Seldinger technique|percutaneous technique]] and this technique was quickly adapted to [[Left heart catheterization|left heart cardiac catheterizations]]. With the growth of [[Interventional Cardiology]] in the years following Grüntzig’s introduction of coronary angioplasty in 1977, the [[percutaneous]] approach became, and today remains, by far the most common method of performing catheterization, [[angiography]] and [[Endovascular surgery|endovascular intervention]]. Within the realm of [[percutaneous]] approaches, the majority of the procedures are performed from the [[femoral]] approach, with a minority being done from a [[Radial artery|radial]] approach. [[Brachial]] and [[axillary]] are also used in a minority of procedures. Reasons for the continued preference of the [[femoral]] route for access includes the [[vessel]] size, operator training and equipment, [[radiation exposure]] (operator), and the advent of vascular closure devices. Studies have suggested that between 8-10% of all patients selected for a [[Transradial cardiac catheterization|transradial approach]] will convert to a transfemoral route | |||
== Recommendations for Perioperative Management–Timing of Elective Noncardiac Surgery in Patients Treated With PCI and DAPT == | |||
Elective noncardiac surgery should be delayed 30 days after BMS implantation and optimally 6 months after DES implantation''([[ACC AHA guidelines classification scheme#Level%20of%20Evidence|Level of Evidence: B-NR]])''. When noncardiac surgery is required in patients currently taking a P2Y12 inhibitor, a consensus decision among treating clinicians as to the relative risks of surgery and discontinuation or continuation of antiplatelet therapy can be useful.''([[ACC AHA guidelines classification scheme#Level%20of%20Evidence|Level of Evidence: C-EO]])''". Elective noncardiac surgery after DES implantation in patients for whom P2Y12 inhibitor therapy will need to be discontinued may be considered after 3 months if the risk of further delay of surgery is greater than the expected risks of stent thrombosis''([[ACC AHA guidelines classification scheme#Level%20of%20Evidence|Level of Evidence: C-EO]])''". " Prasugrel should not be administered to patients with a prior history of stroke or TIA''([[ACC AHA guidelines classification scheme#Level%20of%20Evidence|Level of Evidence: B-R]])'' | |||
Revision as of 14:27, 13 April 2020
Percutaneous coronary intervention Microchapters |
PCI Complications |
---|
PCI in Specific Patients |
PCI in Specific Lesion Types |
Percutaneous coronary intervention overview On the Web |
American Roentgen Ray Society Images of Percutaneous coronary intervention overview |
Directions to Hospitals Treating Percutaneous coronary intervention |
Risk calculators and risk factors for Percutaneous coronary intervention overview |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]
Overview
Percutaneous coronary intervention (PCI), commonly known as coronary angioplasty, is an invasive cardiologic therapeutic procedure to treat the stenotic (narrowed) coronary arteries of the heart. These stenotic segments are due to the build up of cholesterol-laden plaques that form due to atherosclerosis in coronary heart disease. PCI is usually performed by an interventional cardiologist. Percutaneous coronary intervention can be performed to reduce or eliminate the symptoms of coronary artery disease, including angina (chest pain), dyspnea (shortness of breath) on exertion, and congestive heart failure. PCI is also used to abort an acute myocardial infarction, and in some specific cases it may reduce mortality.
Risks stratification and benefits of PCI
There are several risk assessment scores which can help in determining a patient's risk for death, myocardial infarction and recurrent cardiac events.
Preparation of the patient for PCI
There are several steps involved in preparing the patient for PCI, which include the use of premedications and the use of a Heart Team approach. Attention should be given to possible adverse reactions to contrast, possible anaphylactoid reactions, the use of statins, bleeding risk in the patient, and the presence of on-site surgical back-up services.
PCI equipment
Guiding catheter selection
Diagnostic catheters used for coronary arteriography are usually constructed from polyethylene or polyurethane with a fine wire braid within the wall to allow advancement and directional control (torquability) and to prevent kinking. The outer diameter size of the catheters ranges from 4 to 8F, but 5 and 6F catheters are used most commonly for diagnostic arteriography.
Guidewire selection
Angioplasty guidewires are small, soft, flexible, lubricated, wires that act as a rail over which equipment such as an angioplasty balloon, a stent, or an intravascular ultrasound device can be delivered over into the coronary artery. Angioplasty guide wires were introduced in 1982 by doctors Simpson and Roberts. The introduction of coronary guidewires was a major advance as it allowed the angioplasty balloon to be a traumatically steered to the proper location.
Pharmacotherapy to Support PCI
2011 AHA guidelines recommend the use of antiplatelet therapy aspirin (Level of Evidence: B) and P2Y12 receptor inhibitor (clopidogrel, prasugrel and ticagrelor) (Level of Evidence: A) to support PCI in patients with ACS. Few randomised trials have been conducted showing comparison of clopidogrel with aspirin and other P2Y12 inhibitors (prasugrel and ticagrelor) in terms of clinical benefit and risk of bleeding when given in patients undergoing PCI. However, there is limited data comparing new P2Y12 receptor inhibitors (prasugrel and ticagrelor) for downstream and upstream therapy in patients undergoing PCI with non ST elevation MI in terms of clinical benefit and adverse effects. Hence, a new large scale randomised open label trial called DUBIUS is in process in Italy comparing two new P2Y12 inhibitors prasugrel and ticagrelor for pretreatment in patients with non ST elevation MI undergoing PCI.
Vascular Closure Devices
At the very heart of any successful endovascular procedure is successful arterial entry and exit. The first successful cardiac catheterization, according to Andre Cournand, was performed on an equine patient in 1844 utilizing a retrograde approach through both the jugular vein and carotid artery. Human retrograde left heart catheterization was first reported by Zimmerman and Limon-Lason in 1950. Shortly thereafter in 1953, Seldinger developed the percutaneous technique and this technique was quickly adapted to left heart cardiac catheterizations. With the growth of Interventional Cardiology in the years following Grüntzig’s introduction of coronary angioplasty in 1977, the percutaneous approach became, and today remains, by far the most common method of performing catheterization, angiography and endovascular intervention. Within the realm of percutaneous approaches, the majority of the procedures are performed from the femoral approach, with a minority being done from a radial approach. Brachial and axillary are also used in a minority of procedures. Reasons for the continued preference of the femoral route for access includes the vessel size, operator training and equipment, radiation exposure (operator), and the advent of vascular closure devices. Studies have suggested that between 8-10% of all patients selected for a transradial approach will convert to a transfemoral route
Recommendations for Perioperative Management–Timing of Elective Noncardiac Surgery in Patients Treated With PCI and DAPT
Elective noncardiac surgery should be delayed 30 days after BMS implantation and optimally 6 months after DES implantation(Level of Evidence: B-NR). When noncardiac surgery is required in patients currently taking a P2Y12 inhibitor, a consensus decision among treating clinicians as to the relative risks of surgery and discontinuation or continuation of antiplatelet therapy can be useful.(Level of Evidence: C-EO)". Elective noncardiac surgery after DES implantation in patients for whom P2Y12 inhibitor therapy will need to be discontinued may be considered after 3 months if the risk of further delay of surgery is greater than the expected risks of stent thrombosis(Level of Evidence: C-EO)". " Prasugrel should not be administered to patients with a prior history of stroke or TIA(Level of Evidence: B-R)