COVID-19 Hematologic Complications: Difference between revisions

Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
__NOTOC__
__NOTOC__
{{CMG}} {{AE}} {{RG}}, [https://www.wikidoc.org/index.php/User:ShakibaHassanzadeh Shakiba Hassanzadeh, MD.] {{IF}}
{{CMG}} {{AE}} {{RG}}, [https://www.wikidoc.org/index.php/User:ShakibaHassanzadeh Shakiba Hassanzadeh, MD.] {{IF}} {{Fausatadogba}}


==Overview==
==Overview==
Line 12: Line 12:
*
*
===Neutrophilia===
===Neutrophilia===
The human body fights infections by recruiting neutrophils early to the sites of infection by oxidative burst and phagocytosis <ref name="urlTargeting potential drivers of COVID-19: Neutrophil extracellular traps | Journal of Experimental Medicine | Rockefeller University Press">{{cite web |url=https://rupress.org/jem/article/217/6/e20200652/151683/Targeting-potential-drivers-of-COVID-19-Neutrophil?searchresult=1 |title=Targeting potential drivers of COVID-19: Neutrophil extracellular traps &#124; Journal of Experimental Medicine &#124; Rockefeller University Press |format= |work= |accessdate=}}</ref>.New evidence suggests that the severe symptoms of COVID-19, including Acute Respiratory Distress Syndrome (ARDS), could be caused by Neutrophil Extracellular Traps (NETs)<ref name="urlSevere COVID-19 symptoms may be caused by overactive neutrophils">{{cite web |url=https://www.drugtargetreview.com/news/60212/severe-covid-19-symptoms-may-be-caused-by-overactive-neutrophils/ |title=Severe COVID-19 symptoms may be caused by overactive neutrophils |format= |work= |accessdate=}}</ref>. The neutrophil-to-lymphocyte ratio (NLR) has been identified as the independent risk factor for severe illness in patients with the 2019 novel coronavirus disease<ref name="urlNeutrophil-to-Lymphocyte Ratio Predicts Severe Illness Patients with 2019 Novel Coronavirus in the Early Stage | medRxiv">{{cite web |url=https://www.medrxiv.org/content/10.1101/2020.02.10.20021584v1 |title=Neutrophil-to-Lymphocyte Ratio Predicts Severe Illness Patients with 2019 Novel Coronavirus in the Early Stage &#124; medRxiv |format= |work= |accessdate=}}</ref>.
The human body fights infections by recruiting neutrophils early to the sites of infection by oxidative burst and phagocytosis. <ref name="urlTargeting potential drivers of COVID-19: Neutrophil extracellular traps | Journal of Experimental Medicine | Rockefeller University Press">{{cite web |url=https://rupress.org/jem/article/217/6/e20200652/151683/Targeting-potential-drivers-of-COVID-19-Neutrophil?searchresult=1 |title=Targeting potential drivers of COVID-19: Neutrophil extracellular traps &#124; Journal of Experimental Medicine &#124; Rockefeller University Press |format= |work= |accessdate=}}</ref> New evidence suggests that the severe symptoms of COVID-19, including Acute Respiratory Distress Syndrome (ARDS), could be caused by Neutrophil Extracellular Traps (NETs). Acute Respiratory Distress Syndrome (ARDS), pulmonary inflammation, thick mucus secretions in the airways, extensive lung damage and blood clots are suggested to be as a result of the action of Neutrophils. When neutrophils detect pathogens, they can expel their DNA in a web laced with toxic enzymes (called a NET- Neutrophil Extracellular Trap) to attack them. These NETs capture and digest the unwanted pathogen but in cases of ARDS (Covid-19 manifestation) they cause damage to the lungs and other organs. <ref name="urlSevere COVID-19 symptoms may be caused by overactive neutrophils">{{cite web |url=https://www.drugtargetreview.com/news/60212/severe-covid-19-symptoms-may-be-caused-by-overactive-neutrophils/ |title=Severe COVID-19 symptoms may be caused by overactive neutrophils |format= |work= |accessdate=}}</ref> The neutrophil-to-lymphocyte ratio (NLR) has been identified as the independent risk factor for severe illness in patients with the 2019 novel coronavirus disease.<ref name="urlNeutrophil-to-Lymphocyte Ratio Predicts Severe Illness Patients with 2019 Novel Coronavirus in the Early Stage | medRxiv">{{cite web |url=https://www.medrxiv.org/content/10.1101/2020.02.10.20021584v1 |title=Neutrophil-to-Lymphocyte Ratio Predicts Severe Illness Patients with 2019 Novel Coronavirus in the Early Stage &#124; medRxiv |format= |work= |accessdate=}}</ref> A higher NLR at hospital admission in patients has been associated with a more severe outcome. A NLR of >4 has been identified as a predictor of admission to the ICU.<ref name="pmid7211594">{{cite journal |vauthors=Akagi Y, Itoi M, Sano Y, Andonian MR, Barrett AS, Vinogradov SN, Moroi K, Sato T, Gheorghescu B, Baghurst PA, Nichol LW, Rainsford KD, Akagi Y, Itoi M, Sano Y |title=[Monoaminergic neurons of monkey retina (author's transl)] |language=Japanese |journal=Nippon Ganka Gakkai Zasshi |volume=84 |issue=8 |pages=771–80 |date=August 1980 |pmid=7211594 |doi=10.1016/0005-2795(75)90035-5 |url=}}</ref>
===Thrombocytopenia===
===Thrombocytopenia===
There is an association between severe COVID-19 infection and thrombocytopenia.<ref name="pmid32178975">{{cite journal| author=Lippi G, Plebani M, Henry BM| title=Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. | journal=Clin Chim Acta | year= 2020 | volume= 506 | issue=  | pages= 145-148 | pmid=32178975 | doi=10.1016/j.cca.2020.03.022 | pmc=7102663 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32178975  }} </ref> Thrombocytopenia is seen in 57.7% of patients with severe COVID-19 infection compared to 31.6 % of patients with non-severe infection.<ref name="pmid32109013">{{cite journal| author=Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX | display-authors=etal| title=Clinical Characteristics of Coronavirus Disease 2019 in China. | journal=N Engl J Med | year= 2020 | volume= 382 | issue= 18 | pages= 1708-1720 | pmid=32109013 | doi=10.1056/NEJMoa2002032 | pmc=7092819 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32109013  }} </ref>
There is an association between severe COVID-19 infection and thrombocytopenia.<ref name="pmid32178975">{{cite journal| author=Lippi G, Plebani M, Henry BM| title=Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. | journal=Clin Chim Acta | year= 2020 | volume= 506 | issue=  | pages= 145-148 | pmid=32178975 | doi=10.1016/j.cca.2020.03.022 | pmc=7102663 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32178975  }} </ref> Thrombocytopenia is seen in 57.7% of patients with severe COVID-19 infection compared to 31.6 % of patients with non-severe infection.<ref name="pmid32109013">{{cite journal| author=Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX | display-authors=etal| title=Clinical Characteristics of Coronavirus Disease 2019 in China. | journal=N Engl J Med | year= 2020 | volume= 382 | issue= 18 | pages= 1708-1720 | pmid=32109013 | doi=10.1056/NEJMoa2002032 | pmc=7092819 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32109013  }} </ref>

Revision as of 18:39, 16 June 2020

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Ramyar Ghandriz MD[2], Shakiba Hassanzadeh, MD. Ifrah Fatima, M.B.B.S[3] Oluwabusola Fausat Adogba, MD[4]

Overview

Recent pandemic of COVID-19 infection is shown to have multi-systemic complication. Hematologic complication of COVID-19 include Lymphopenia, Neutrophilia, Thrombocytopenia. some articles suggest that Hemoglobin may decrease in the event of disease.

Complications

Lymphopenia

There is an assosiation between sever COVID-19 infection and lymphopenia.[1]

Neutrophilia

The human body fights infections by recruiting neutrophils early to the sites of infection by oxidative burst and phagocytosis. [2] New evidence suggests that the severe symptoms of COVID-19, including Acute Respiratory Distress Syndrome (ARDS), could be caused by Neutrophil Extracellular Traps (NETs). Acute Respiratory Distress Syndrome (ARDS), pulmonary inflammation, thick mucus secretions in the airways, extensive lung damage and blood clots are suggested to be as a result of the action of Neutrophils. When neutrophils detect pathogens, they can expel their DNA in a web laced with toxic enzymes (called a NET- Neutrophil Extracellular Trap) to attack them. These NETs capture and digest the unwanted pathogen but in cases of ARDS (Covid-19 manifestation) they cause damage to the lungs and other organs. [3] The neutrophil-to-lymphocyte ratio (NLR) has been identified as the independent risk factor for severe illness in patients with the 2019 novel coronavirus disease.[4] A higher NLR at hospital admission in patients has been associated with a more severe outcome. A NLR of >4 has been identified as a predictor of admission to the ICU.[5]

Thrombocytopenia

There is an association between severe COVID-19 infection and thrombocytopenia.[6] Thrombocytopenia is seen in 57.7% of patients with severe COVID-19 infection compared to 31.6 % of patients with non-severe infection.[7]

The pathogenesis of thrombocytopenia in COVID-19 infection is due to several factors:[8]

  • Decrease in primary platelet production due to infection of bone marrow cells by coronaviruses[9] and inhibition of bone marrow growth,[10] which lead to abnormal hematopoietic function.[8]
  • Increase in platelet destruction due to increase in auto-antibodies and immune complexes.[11]
  • Decrease in circulating platelet due to lung injury which causes megakaryocyte fragmentation and decreases platelet production, because lung is a reservoir for megakaryocyte and hematopoieitic progenitor cells and has a role in platelet production.[8][12] In addition, decrease in platelets may be due to activation of platelets that result in platelet aggregation and formation of microthrombus which increase platelet consumption.[8][13]

Hemoglobin decrease

Hypercoagulability

Other hematological findings

References

  1. Tan, Li; Wang, Qi; Zhang, Duanyang; Ding, Jinya; Huang, Qianchuan; Tang, Yi-Quan; Wang, Qiongshu; Miao, Hongming (2020). "Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study". Signal Transduction and Targeted Therapy. 5 (1). doi:10.1038/s41392-020-0148-4. ISSN 2059-3635.
  2. "Targeting potential drivers of COVID-19: Neutrophil extracellular traps | Journal of Experimental Medicine | Rockefeller University Press".
  3. "Severe COVID-19 symptoms may be caused by overactive neutrophils".
  4. "Neutrophil-to-Lymphocyte Ratio Predicts Severe Illness Patients with 2019 Novel Coronavirus in the Early Stage | medRxiv".
  5. Akagi Y, Itoi M, Sano Y, Andonian MR, Barrett AS, Vinogradov SN, Moroi K, Sato T, Gheorghescu B, Baghurst PA, Nichol LW, Rainsford KD, Akagi Y, Itoi M, Sano Y (August 1980). "[Monoaminergic neurons of monkey retina (author's transl)]". Nippon Ganka Gakkai Zasshi (in Japanese). 84 (8): 771–80. doi:10.1016/0005-2795(75)90035-5. PMID 7211594.
  6. Lippi G, Plebani M, Henry BM (2020). "Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis". Clin Chim Acta. 506: 145–148. doi:10.1016/j.cca.2020.03.022. PMC 7102663 Check |pmc= value (help). PMID 32178975 Check |pmid= value (help).
  7. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX; et al. (2020). "Clinical Characteristics of Coronavirus Disease 2019 in China". N Engl J Med. 382 (18): 1708–1720. doi:10.1056/NEJMoa2002032. PMC 7092819 Check |pmc= value (help). PMID 32109013 Check |pmid= value (help).
  8. 8.0 8.1 8.2 8.3 Xu P, Zhou Q, Xu J (2020). "Mechanism of thrombocytopenia in COVID-19 patients". Ann Hematol. 99 (6): 1205–1208. doi:10.1007/s00277-020-04019-0. PMC 7156897 Check |pmc= value (help). PMID 32296910 Check |pmid= value (help).
  9. Yang M, Ng MH, Li CK (2005). "Thrombocytopenia in patients with severe acute respiratory syndrome (review)". Hematology. 10 (2): 101–5. doi:10.1080/10245330400026170. PMID 16019455.
  10. Yeager CL, Ashmun RA, Williams RK, Cardellichio CB, Shapiro LH, Look AT; et al. (1992). "Human aminopeptidase N is a receptor for human coronavirus 229E". Nature. 357 (6377): 420–2. doi:10.1038/357420a0. PMC 7095410 Check |pmc= value (help). PMID 1350662.
  11. Nardi M, Tomlinson S, Greco MA, Karpatkin S (2001). "Complement-independent, peroxide-induced antibody lysis of platelets in HIV-1-related immune thrombocytopenia". Cell. 106 (5): 551–61. doi:10.1016/s0092-8674(01)00477-9. PMID 11551503.
  12. Lefrançais E, Ortiz-Muñoz G, Caudrillier A, Mallavia B, Liu F, Sayah DM; et al. (2017). "The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors". Nature. 544 (7648): 105–109. doi:10.1038/nature21706. PMC 5663284. PMID 28329764.
  13. Liu X, Zhang R, He G (2020). "Hematological findings in coronavirus disease 2019: indications of progression of disease". Ann Hematol. doi:10.1007/s00277-020-04103-5. PMC 7266734 Check |pmc= value (help). PMID 32495027 Check |pmid= value (help).