COVID-19-associated thrombocytopenia: Difference between revisions

Jump to navigation Jump to search
Line 12: Line 12:


* [[COVID-19|Coronavirus disease 2019 (COVID-19)]] is caused by a novel [[coronavirus]] called [[SARS-CoV-2]], which caused a respiratory illness [[outbreak]] that was first detected in Wuhan, China.<ref>{{Cite web|url=https://www.cdc.gov/coronavirus/2019-ncov/about/index.html|title=|last=|first=|date=|website=|archive-url=|archive-date=|dead-url=|access-date=}}</ref><ref name="LuCui2020">{{cite journal|last1=Lu|first1=Jian|last2=Cui|first2=Jie|last3=Qian|first3=Zhaohui|last4=Wang|first4=Yirong|last5=Zhang|first5=Hong|last6=Duan|first6=Yuange|last7=Wu|first7=Xinkai|last8=Yao|first8=Xinmin|last9=Song|first9=Yuhe|last10=Li|first10=Xiang|last11=Wu|first11=Changcheng|last12=Tang|first12=Xiaolu|title=On the origin and continuing evolution of SARS-CoV-2|journal=National Science Review|year=2020|issn=2095-5138|doi=10.1093/nsr/nwaa036}}</ref>
* [[COVID-19|Coronavirus disease 2019 (COVID-19)]] is caused by a novel [[coronavirus]] called [[SARS-CoV-2]], which caused a respiratory illness [[outbreak]] that was first detected in Wuhan, China.<ref>{{Cite web|url=https://www.cdc.gov/coronavirus/2019-ncov/about/index.html|title=|last=|first=|date=|website=|archive-url=|archive-date=|dead-url=|access-date=}}</ref><ref name="LuCui2020">{{cite journal|last1=Lu|first1=Jian|last2=Cui|first2=Jie|last3=Qian|first3=Zhaohui|last4=Wang|first4=Yirong|last5=Zhang|first5=Hong|last6=Duan|first6=Yuange|last7=Wu|first7=Xinkai|last8=Yao|first8=Xinmin|last9=Song|first9=Yuhe|last10=Li|first10=Xiang|last11=Wu|first11=Changcheng|last12=Tang|first12=Xiaolu|title=On the origin and continuing evolution of SARS-CoV-2|journal=National Science Review|year=2020|issn=2095-5138|doi=10.1093/nsr/nwaa036}}</ref>
*Initially, the [[Patient|patients]] were believed to have contracted the [[virus]] from [[seafood]]/animal markets which suggested animal-to-human spread.
*The growing number of [[patients]] however, suggest that human-to-human transmission is actively occurring.<ref name="HuangWang2020">{{cite journal|last1=Huang|first1=Chaolin|last2=Wang|first2=Yeming|last3=Li|first3=Xingwang|last4=Ren|first4=Lili|last5=Zhao|first5=Jianping|last6=Hu|first6=Yi|last7=Zhang|first7=Li|last8=Fan|first8=Guohui|last9=Xu|first9=Jiuyang|last10=Gu|first10=Xiaoying|last11=Cheng|first11=Zhenshun|last12=Yu|first12=Ting|last13=Xia|first13=Jiaan|last14=Wei|first14=Yuan|last15=Wu|first15=Wenjuan|last16=Xie|first16=Xuelei|last17=Yin|first17=Wen|last18=Li|first18=Hui|last19=Liu|first19=Min|last20=Xiao|first20=Yan|last21=Gao|first21=Hong|last22=Guo|first22=Li|last23=Xie|first23=Jungang|last24=Wang|first24=Guangfa|last25=Jiang|first25=Rongmeng|last26=Gao|first26=Zhancheng|last27=Jin|first27=Qi|last28=Wang|first28=Jianwei|last29=Cao|first29=Bin|title=Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China|journal=The Lancet|volume=395|issue=10223|year=2020|pages=497–506|issn=01406736|doi=10.1016/S0140-6736(20)30183-5}}</ref><ref>{{Cite web|url=https://www.cdc.gov/coronavirus/2019-ncov/about/transmission.html|title=|last=|first=|date=|website=|archive-url=|archive-date=|dead-url=|access-date=}}</ref>


* On January 30, 2020, the [[outbreak]] was declared a Public Health Emergency of International Concern.
* On January 30, 2020, the [[outbreak]] was declared a Public Health Emergency of International Concern.
Line 81: Line 83:


==Screening==
==Screening==
<s>There is insufficient evidence to recommend routine screening for [disease/malignancy].</s>


<s>OR</s>
* It has been reported that thrombocytopenia upon admission for COVID-19 infection is associated with severe disease and mortality.<ref name="pmid32557535">{{cite journal| author=Maquet J, Lafaurie M, Sommet A, Moulis G, Covid-Clinic-Toul investigators group. Alvarez M | display-authors=etal| title=Thrombocytopenia is independently associated with poor outcome in patients hospitalized for COVID-19. | journal=Br J Haematol | year= 2020 | volume=  | issue=  | pages=  | pmid=32557535 | doi=10.1111/bjh.16950 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32557535  }} </ref>
* However, there is insufficient evidence to recommend routine screening and monitoring of thrombocytopenia for predicting disease progression in patients with COVID-19 infection and further studies are required.
 
==Natural History, Complications, and Prognosis==


<s>According to the [guideline name], screening for [disease name] is not recommended.</s>
=== Natural History ===
[[Thrombocytopenia]] is associated with an increased risk for severe [[COVID-19]] infection (threefold).<ref name="pmid32178975">{{cite journal| author=Lippi G, Plebani M, Henry BM| title=Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. | journal=Clin Chim Acta | year= 2020 | volume= 506 | issue=  | pages= 145-148 | pmid=32178975 | doi=10.1016/j.cca.2020.03.022 | pmc=7102663 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32178975  }} </ref>


<s>OR</s>
=== Complications ===
Complications of thrombocytopenia in patients with severe COVID-19 infection include:


<s>According to the [guideline name], screening for [disease name] by [test 1] is recommended every [duration] among patients with [condition 1], [condition 2], and [condition 3].</s>
* Intravascular coagulopathy  


==Natural History, Complications, and Prognosis==
*[[Disseminated intravascular coagulation|Disseminated intravascular coagulation (DIC)]]


*[[Thrombocytopenia]] is associated with an increased risk for severe [[COVID-19]] infection (threefold).<ref name="pmid32178975">{{cite journal| author=Lippi G, Plebani M, Henry BM| title=Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. | journal=Clin Chim Acta | year= 2020 | volume= 506 | issue=  | pages= 145-148 | pmid=32178975 | doi=10.1016/j.cca.2020.03.022 | pmc=7102663 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32178975  }} </ref>
=== Prognosis ===
*A study has suggested that thrombocytopenia upon admission for COVID-19 infection is independently and strongly associated with poor outcome and mortality.<ref name="pmid32557535">{{cite journal| author=Maquet J, Lafaurie M, Sommet A, Moulis G, Covid-Clinic-Toul investigators group. Alvarez M | display-authors=etal| title=Thrombocytopenia is independently associated with poor outcome in patients hospitalized for COVID-19. | journal=Br J Haematol | year= 2020 | volume=  | issue=  | pages=  | pmid=32557535 | doi=10.1111/bjh.16950 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32557535  }} </ref>
A study has suggested that thrombocytopenia upon admission for COVID-19 infection is independently and strongly associated with poor outcome and mortality.<ref name="pmid32557535" />
* Complications of thrombocytopenia in patients with severe COVID-19 infection include:
** [[Disseminated intravascular coagulation|Disseminated intravascular coagulation (DIC)]]


==Diagnosis==
==Diagnosis==
Line 127: Line 131:


* Compelete blood count (CBC): Thrombocytopenia is defined by platelet count <150 x <math>10^9</math>/L on CBC.<ref name="pmid28030481" />
* Compelete blood count (CBC): Thrombocytopenia is defined by platelet count <150 x <math>10^9</math>/L on CBC.<ref name="pmid28030481" />
*Thrombocytopenia in patients with COVID-19 is usually moderate (>100× <math>10^9</math>/L), however in patients with multi-organ failure with ARDS or capillary leak syndrome platelet count is >50×<math>10^9</math>.<ref name="pmid32178975" />
*  
*  



Revision as of 18:25, 26 June 2020

WikiDoc Resources for COVID-19-associated thrombocytopenia

Articles

Most recent articles on COVID-19-associated thrombocytopenia

Most cited articles on COVID-19-associated thrombocytopenia

Review articles on COVID-19-associated thrombocytopenia

Articles on COVID-19-associated thrombocytopenia in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on COVID-19-associated thrombocytopenia

Images of COVID-19-associated thrombocytopenia

Photos of COVID-19-associated thrombocytopenia

Podcasts & MP3s on COVID-19-associated thrombocytopenia

Videos on COVID-19-associated thrombocytopenia

Evidence Based Medicine

Cochrane Collaboration on COVID-19-associated thrombocytopenia

Bandolier on COVID-19-associated thrombocytopenia

TRIP on COVID-19-associated thrombocytopenia

Clinical Trials

Ongoing Trials on COVID-19-associated thrombocytopenia at Clinical Trials.gov

Trial results on COVID-19-associated thrombocytopenia

Clinical Trials on COVID-19-associated thrombocytopenia at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on COVID-19-associated thrombocytopenia

NICE Guidance on COVID-19-associated thrombocytopenia

NHS PRODIGY Guidance

FDA on COVID-19-associated thrombocytopenia

CDC on COVID-19-associated thrombocytopenia

Books

Books on COVID-19-associated thrombocytopenia

News

COVID-19-associated thrombocytopenia in the news

Be alerted to news on COVID-19-associated thrombocytopenia

News trends on COVID-19-associated thrombocytopenia

Commentary

Blogs on COVID-19-associated thrombocytopenia

Definitions

Definitions of COVID-19-associated thrombocytopenia

Patient Resources / Community

Patient resources on COVID-19-associated thrombocytopenia

Discussion groups on COVID-19-associated thrombocytopenia

Patient Handouts on COVID-19-associated thrombocytopenia

Directions to Hospitals Treating COVID-19-associated thrombocytopenia

Risk calculators and risk factors for COVID-19-associated thrombocytopenia

Healthcare Provider Resources

Symptoms of COVID-19-associated thrombocytopenia

Causes & Risk Factors for COVID-19-associated thrombocytopenia

Diagnostic studies for COVID-19-associated thrombocytopenia

Treatment of COVID-19-associated thrombocytopenia

Continuing Medical Education (CME)

CME Programs on COVID-19-associated thrombocytopenia

International

COVID-19-associated thrombocytopenia en Espanol

COVID-19-associated thrombocytopenia en Francais

Business

COVID-19-associated thrombocytopenia in the Marketplace

Patents on COVID-19-associated thrombocytopenia

Experimental / Informatics

List of terms related to COVID-19-associated thrombocytopenia

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief:

Synonyms and keywords:

Overview

There is an association between severe COVID-19 infection and thrombocytopenia.

Historical Perspective

Classification

  • Thrombocytopenia is defined by platelet count <150 x <math>10^9</math>/L on CBC.[5]
  • Classification of thrombocytopenia by platelet count is:[6]
    • Mild: between 70,000 and 150,000 x <math>10^9</math>/L
    • Severe: less than 20,000 x <math>10^9</math>/L
  • Most patients are asymptomatic if the platelet count is 50,000 x <math>10^9</math>/L or greater.[6]
  • Patients with platelet count between 30 and 50 x <math>10^9</math>/L rarely have purpura, but may have excessive bleeding with trauma.[6]
  • Patients with platelet count between 10 and 30 x <math>10^3</math>/L may have bleeding with minor trauma.[6]
  • Patients with platelet count less than 10 x <math>10^3</math>/L have increased risk for spontaneous bleeding, petechiae, and bruising.[6]
  • Spontaneous bleeding, which is an emergency, usually occurs in patients with platelet counts less than 5 x <math>10^3</math>/L .[6]

Pathophysiology

The pathogenesis of thrombocytopenia in COVID-19 infection is due to several factors:[7]

  • Decrease in primary platelet production due to infection of bone marrow cells by coronaviruses[8] and inhibition of bone marrow growth,[9] which lead to abnormal hematopoietic function.[7]
  • Increase in platelet destruction due to increase in auto-antibodies and immune complexes.[10]
  • Decrease in circulating platelet due to lung injury which causes megakaryocyte fragmentation and decreases platelet production, because lung is a reservoir for megakaryocyte and hematopoieitic progenitor cells and has a role in platelet production.[7][11]
  • In addition, decrease in platelets may be due to activation of platelets that result in platelet aggregation and formation of micro-thrombus which increase platelet consumption.[7][12]

Causes

Disease name] may be caused by [cause1], [cause2], or [cause3].

OR

Common causes of [disease] include [cause1], [cause2], and [cause3].

OR

The most common cause of [disease name] is [cause 1]. Less common causes of [disease name] include [cause 2], [cause 3], and [cause 4].

OR

The cause of [disease name] has not been identified. To review risk factors for the development of [disease name], click here.

Differentiating ((Page name)) from other Diseases

[Disease name] must be differentiated from other diseases that cause [clinical feature 1], [clinical feature 2], and [clinical feature 3], such as [differential dx1], [differential dx2], and [differential dx3].

OR

[Disease name] must be differentiated from [[differential dx1], [differential dx2], and [differential dx3].

Epidemiology and Demographics

  • Thrombocytopenia is seen in 36% of patients with COVID-19 infection.[13]
  • Thrombocytopenia is seen in 57.7% of patients with severe COVID-19 infection compared to 31.6 % of patients with non-severe infection.[13]

Risk Factors

There are no established risk factors for [disease name].

OR

The most potent risk factor in the development of [disease name] is [risk factor 1]. Other risk factors include [risk factor 2], [risk factor 3], and [risk factor 4].

OR

Common risk factors in the development of [disease name] include [risk factor 1], [risk factor 2], [risk factor 3], and [risk factor 4].

OR

Common risk factors in the development of [disease name] may be occupational, environmental, genetic, and viral.

Screening

  • It has been reported that thrombocytopenia upon admission for COVID-19 infection is associated with severe disease and mortality.[14]
  • However, there is insufficient evidence to recommend routine screening and monitoring of thrombocytopenia for predicting disease progression in patients with COVID-19 infection and further studies are required.

Natural History, Complications, and Prognosis

Natural History

Thrombocytopenia is associated with an increased risk for severe COVID-19 infection (threefold).[15]

Complications

Complications of thrombocytopenia in patients with severe COVID-19 infection include:

  • Intravascular coagulopathy  

Prognosis

A study has suggested that thrombocytopenia upon admission for COVID-19 infection is independently and strongly associated with poor outcome and mortality.[14]

Diagnosis

Diagnostic Study of Choice

  • The diagnostic study of choice for thrombocytopenia is compelete blood count (CBC).
  • Thrombocytopenia is defined by platelet count <150 x <math>10^9</math>/L on CBC.[5]
  • Thrombocytopenia in patients with COVID-19 is usually moderate (>100× <math>10^9</math>/L), however in patients with multi-organ failure with ARDS or capillary leak syndrome platelet count is >50×<math>10^9</math>.[15]

History and Symptoms

Physical Examination

The physical examination in patients with thrombocytopenia should include checking for:[5]

  • Bleeding[16] (epistaxis, bloody sputum, gingival bleeding, menorrhagia, heavy bleeding after invasive procedures or childbirth)[17]
  • Unexplained bruising (petechiae, purpura, ecchymosis)
  • Hepatosplenomegaly
  • Abdominal tenderness
  • Urinary tract (check for hematuria)[18]
  • Stool for occult blood (evaluation of gastrointestinal and rectal bleeding)  
  • Retinal hemorrhage on fundoscopic exam (evaluation of central nervous system bleeding)[18]
  • Neurologic examination (check for intracranial bleeding)[18]
  • Soft tissue or joint bleeding is not associated with thrombocytopenia and other coagulation disorders such as DIC should be checked.[16][18]

Laboratory Findings

  • Compelete blood count (CBC): Thrombocytopenia is defined by platelet count <150 x <math>10^9</math>/L on CBC.[5]
  • Thrombocytopenia in patients with COVID-19 is usually moderate (>100× <math>10^9</math>/L), however in patients with multi-organ failure with ARDS or capillary leak syndrome platelet count is >50×<math>10^9</math>.[15]

Electrocardiogram

There are no ECG findings associated with [disease name].

OR

An ECG may be helpful in the diagnosis of [disease name]. Findings on an ECG suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

X-ray

There are no x-ray findings associated with [disease name].

OR

An x-ray may be helpful in the diagnosis of [disease name]. Findings on an x-ray suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

There are no x-ray findings associated with [disease name]. However, an x-ray may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].

Echocardiography or Ultrasound

There are no echocardiography/ultrasound findings associated with [disease name].

OR

Echocardiography/ultrasound may be helpful in the diagnosis of [disease name]. Findings on an echocardiography/ultrasound suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

There are no echocardiography/ultrasound findings associated with [disease name]. However, an echocardiography/ultrasound may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].

CT scan

There are no CT scan findings associated with [disease name].

OR

[Location] CT scan may be helpful in the diagnosis of [disease name]. Findings on CT scan suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

There are no CT scan findings associated with [disease name]. However, a CT scan may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].

MRI

There are no MRI findings associated with [disease name].

OR

[Location] MRI may be helpful in the diagnosis of [disease name]. Findings on MRI suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

There are no MRI findings associated with [disease name]. However, a MRI may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].

Other Imaging Findings

There are no other imaging findings associated with [disease name].

OR

[Imaging modality] may be helpful in the diagnosis of [disease name]. Findings on an [imaging modality] suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

Other Diagnostic Studies

There are no other diagnostic studies associated with [disease name].

OR

[Diagnostic study] may be helpful in the diagnosis of [disease name]. Findings suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

Other diagnostic studies for [disease name] include [diagnostic study 1], which demonstrates [finding 1], [finding 2], and [finding 3], and [diagnostic study 2], which demonstrates [finding 1], [finding 2], and [finding 3].

Treatment

Medical Therapy

There is no treatment for [disease name]; the mainstay of therapy is supportive care.

OR

Supportive therapy for [disease name] includes [therapy 1], [therapy 2], and [therapy 3].

OR

The majority of cases of [disease name] are self-limited and require only supportive care.

OR

[Disease name] is a medical emergency and requires prompt treatment.

OR

The mainstay of treatment for [disease name] is [therapy].

OR   The optimal therapy for [malignancy name] depends on the stage at diagnosis.

OR

[Therapy] is recommended among all patients who develop [disease name].

OR

Pharmacologic medical therapy is recommended among patients with [disease subclass 1], [disease subclass 2], and [disease subclass 3].

OR

Pharmacologic medical therapies for [disease name] include (either) [therapy 1], [therapy 2], and/or [therapy 3].

OR

Empiric therapy for [disease name] depends on [disease factor 1] and [disease factor 2].

OR

Patients with [disease subclass 1] are treated with [therapy 1], whereas patients with [disease subclass 2] are treated with [therapy 2].

Surgery

Surgical intervention is not recommended for the management of [disease name].

OR

Surgery is not the first-line treatment option for patients with [disease name]. Surgery is usually reserved for patients with either [indication 1], [indication 2], and [indication 3]

OR

The mainstay of treatment for [disease name] is medical therapy. Surgery is usually reserved for patients with either [indication 1], [indication 2], and/or [indication 3].

OR

The feasibility of surgery depends on the stage of [malignancy] at diagnosis.

OR

Surgery is the mainstay of treatment for [disease or malignancy].

Primary Prevention

There are no established measures for the primary prevention of [disease name].

OR

There are no available vaccines against [disease name].

OR

Effective measures for the primary prevention of [disease name] include [measure1], [measure2], and [measure3].

OR

[Vaccine name] vaccine is recommended for [patient population] to prevent [disease name]. Other primary prevention strategies include [strategy 1], [strategy 2], and [strategy 3].

Secondary Prevention

There are no established measures for the secondary prevention of [disease name].

OR

Effective measures for the secondary prevention of [disease name] include [strategy 1], [strategy 2], and [strategy 3].

References

  1. https://www.cdc.gov/coronavirus/2019-ncov/about/index.html. Missing or empty |title= (help)
  2. Lu, Jian; Cui, Jie; Qian, Zhaohui; Wang, Yirong; Zhang, Hong; Duan, Yuange; Wu, Xinkai; Yao, Xinmin; Song, Yuhe; Li, Xiang; Wu, Changcheng; Tang, Xiaolu (2020). "On the origin and continuing evolution of SARS-CoV-2". National Science Review. doi:10.1093/nsr/nwaa036. ISSN 2095-5138.
  3. Huang, Chaolin; Wang, Yeming; Li, Xingwang; Ren, Lili; Zhao, Jianping; Hu, Yi; Zhang, Li; Fan, Guohui; Xu, Jiuyang; Gu, Xiaoying; Cheng, Zhenshun; Yu, Ting; Xia, Jiaan; Wei, Yuan; Wu, Wenjuan; Xie, Xuelei; Yin, Wen; Li, Hui; Liu, Min; Xiao, Yan; Gao, Hong; Guo, Li; Xie, Jungang; Wang, Guangfa; Jiang, Rongmeng; Gao, Zhancheng; Jin, Qi; Wang, Jianwei; Cao, Bin (2020). "Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China". The Lancet. 395 (10223): 497–506. doi:10.1016/S0140-6736(20)30183-5. ISSN 0140-6736.
  4. https://www.cdc.gov/coronavirus/2019-ncov/about/transmission.html. Missing or empty |title= (help)
  5. 5.0 5.1 5.2 5.3 Greenberg EM (2017). "Thrombocytopenia: A Destruction of Platelets". J Infus Nurs. 40 (1): 41–50. doi:10.1097/NAN.0000000000000204. PMID 28030481.
  6. 6.0 6.1 6.2 6.3 6.4 6.5 Gauer RL, Braun MM (2012). "Thrombocytopenia". Am Fam Physician. 85 (6): 612–22. PMID 22534274.
  7. 7.0 7.1 7.2 7.3 Xu P, Zhou Q, Xu J (2020). "Mechanism of thrombocytopenia in COVID-19 patients". Ann Hematol. 99 (6): 1205–1208. doi:10.1007/s00277-020-04019-0. PMC 7156897 Check |pmc= value (help). PMID 32296910 Check |pmid= value (help).
  8. Yang M, Ng MH, Li CK (2005). "Thrombocytopenia in patients with severe acute respiratory syndrome (review)". Hematology. 10 (2): 101–5. doi:10.1080/10245330400026170. PMID 16019455.
  9. Yeager CL, Ashmun RA, Williams RK, Cardellichio CB, Shapiro LH, Look AT; et al. (1992). "Human aminopeptidase N is a receptor for human coronavirus 229E". Nature. 357 (6377): 420–2. doi:10.1038/357420a0. PMC 7095410 Check |pmc= value (help). PMID 1350662.
  10. Nardi M, Tomlinson S, Greco MA, Karpatkin S (2001). "Complement-independent, peroxide-induced antibody lysis of platelets in HIV-1-related immune thrombocytopenia". Cell. 106 (5): 551–61. doi:10.1016/s0092-8674(01)00477-9. PMID 11551503.
  11. Lefrançais E, Ortiz-Muñoz G, Caudrillier A, Mallavia B, Liu F, Sayah DM; et al. (2017). "The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors". Nature. 544 (7648): 105–109. doi:10.1038/nature21706. PMC 5663284. PMID 28329764.
  12. Liu X, Zhang R, He G (2020). "Hematological findings in coronavirus disease 2019: indications of progression of disease". Ann Hematol. doi:10.1007/s00277-020-04103-5. PMC 7266734 Check |pmc= value (help). PMID 32495027 Check |pmid= value (help).
  13. 13.0 13.1 Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX; et al. (2020). "Clinical Characteristics of Coronavirus Disease 2019 in China". N Engl J Med. 382 (18): 1708–1720. doi:10.1056/NEJMoa2002032. PMC 7092819 Check |pmc= value (help). PMID 32109013 Check |pmid= value (help).
  14. 14.0 14.1 Maquet J, Lafaurie M, Sommet A, Moulis G, Covid-Clinic-Toul investigators group. Alvarez M; et al. (2020). "Thrombocytopenia is independently associated with poor outcome in patients hospitalized for COVID-19". Br J Haematol. doi:10.1111/bjh.16950. PMID 32557535 Check |pmid= value (help).
  15. 15.0 15.1 15.2 Lippi G, Plebani M, Henry BM (2020). "Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis". Clin Chim Acta. 506: 145–148. doi:10.1016/j.cca.2020.03.022. PMC 7102663 Check |pmc= value (help). PMID 32178975 Check |pmid= value (help).
  16. 16.0 16.1 Stasi R (2012). "How to approach thrombocytopenia". Hematology Am Soc Hematol Educ Program. 2012: 191–7. doi:10.1182/asheducation-2012.1.191. PMID 23233580.
  17. Ghoshal K, Bhattacharyya M (2014). "Overview of platelet physiology: its hemostatic and nonhemostatic role in disease pathogenesis". ScientificWorldJournal. 2014: 781857. doi:10.1155/2014/781857. PMC 3960550. PMID 24729754.
  18. 18.0 18.1 18.2 18.3 Sekhon SS, Roy V (2006). "Thrombocytopenia in adults: A practical approach to evaluation and management". South Med J. 99 (5): 491–8, quiz 499-500, 533. doi:10.1097/01.smj.0000209275.75045.d4. PMID 16711312.


Template:WikiDoc Sources