COVID-19 electrocardiogram: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
==Overview== | ==Overview== | ||
There are no specific [[ECG]] findings associated with | There are no specific [[ECG]] findings associated with COVID-19.The ECG findings that have been reported are [[sinus tachycardia]], ST-elevation and diffuse [[T wave]] inversion. | ||
==Electrocardiogram== | ==Electrocardiogram== | ||
*Non specific findings can include [[sinus tachycardia]], ST-elevation and diffuse [[T wave]] inversion.<ref name="pmid26922692">{{cite journal |vauthors=Alhogbani T |title=Acute myocarditis associated with novel Middle east respiratory syndrome coronavirus |journal=Ann Saudi Med |volume=36 |issue=1 |pages=78–80 |date=2016 |pmid=26922692 |pmc=6074274 |doi=10.5144/0256-4947.2016.78 |url=}}</ref> | *Non specific findings can include [[sinus tachycardia]], ST-elevation and diffuse [[T wave]] inversion.<ref name="pmid26922692">{{cite journal |vauthors=Alhogbani T |title=Acute myocarditis associated with novel Middle east respiratory syndrome coronavirus |journal=Ann Saudi Med |volume=36 |issue=1 |pages=78–80 |date=2016 |pmid=26922692 |pmc=6074274 |doi=10.5144/0256-4947.2016.78 |url=}}</ref> |
Revision as of 21:30, 27 June 2020
COVID-19 Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
COVID-19 electrocardiogram On the Web |
American Roentgen Ray Society Images of COVID-19 electrocardiogram |
Risk calculators and risk factors for COVID-19 electrocardiogram |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Sabawoon Mirwais, M.B.B.S, M.D.[2]; Syed Hassan A. Kazmi BSc, MD [3]
Overview
There are no specific ECG findings associated with COVID-19.The ECG findings that have been reported are sinus tachycardia, ST-elevation and diffuse T wave inversion.
Electrocardiogram
- Non specific findings can include sinus tachycardia, ST-elevation and diffuse T wave inversion.[1]
- The ECG may help in identifying preexisting cardiac abnormalities and precipitating factors, such as ischemia, myocarditis, and arrhythmias.
- Most of the findings are:
- ST-T changes, atrial fibrillation,tachy-brady syndrome, and changes consistent with acute pericarditis; COVID-19 induced pericarditis might reflect the expression of ACE2 receptors in epicardial adipocites.[2]
- COVID-19 has been associated with complete heart block, acute coronary syndromes, myocarditis, decompensated heart failure, and pulmonary embolisms.[2]
- COVID-19 and acute myopericarditis:
- low voltage in the limb leads, ST-segment elevation and an ST-segment depression with T-wave inversion; Severe stages of COVID-19 have been attributed to possible hypoxia and inflammatory damage incurred by the virus.[3][4][2][5]
- Sinus rhythm with a first-degree atrioventricular block (AVB) with SITIIIQIII;Sinus tachycardia with incomplete right bundle branch block.[4][5]
- Relative bradycardia in Patients With COVID-19:
- The pathogenesis is poorly understood,cardiac pacemaker cells may be a target for inflammatory cytokines resulting in a change in heart rate dynamics or their responsiveness to neurotransmitters during systemic inflammation. Severe deterioration in some patients with COVID-19 being closely related to the cytokine storm.[6]
- The inflammatory cytokines released during the stage of overwhelming immune response, acting on the cardiac pacemaker cells could possibly contribute to bradycardia. It may be that the high levels of pro-inflammatory cytokines, including IL-6 directly act on the sinoatrial (SA) node.[2]
References
- ↑ Alhogbani T (2016). "Acute myocarditis associated with novel Middle east respiratory syndrome coronavirus". Ann Saudi Med. 36 (1): 78–80. doi:10.5144/0256-4947.2016.78. PMC 6074274. PMID 26922692.
- ↑ 2.0 2.1 2.2 2.3 Amaratunga, Eluwana A; Corwin, Douglas S; Moran, Lynn; Snyder, Richard (2020). "Bradycardia in Patients With COVID-19: A Calm Before the Storm?". Cureus. doi:10.7759/cureus.8599. ISSN 2168-8184.
- ↑ Inciardi, Riccardo M.; Lupi, Laura; Zaccone, Gregorio; Italia, Leonardo; Raffo, Michela; Tomasoni, Daniela; Cani, Dario S.; Cerini, Manuel; Farina, Davide; Gavazzi, Emanuele; Maroldi, Roberto; Adamo, Marianna; Ammirati, Enrico; Sinagra, Gianfranco; Lombardi, Carlo M.; Metra, Marco (2020). "Cardiac Involvement in a Patient With Coronavirus Disease 2019 (COVID-19)". JAMA Cardiology. doi:10.1001/jamacardio.2020.1096. ISSN 2380-6583.
- ↑ 4.0 4.1 He, Jia; Wu, Bo; Chen, Yaqin; Tang, Jianjun; Liu, Qiming; Zhou, Shenghua; Chen, Chen; Qin, Qingwu; Huang, Kang; Lv, Jianlei; Chen, Yan; Peng, Daoquan (2020). "Characteristic Electrocardiographic Manifestations in Patients With COVID-19". Canadian Journal of Cardiology. 36 (6): 966.e1–966.e4. doi:10.1016/j.cjca.2020.03.028. ISSN 0828-282X.
- ↑ 5.0 5.1 Mccullough, S. Andrew; Goyal, Parag; Krishnan, Udhay; Choi, Justin J.; Safford, Monika M.; Okin, Peter M. (2020). "Electrocardiographic Findings in Coronavirus Disease-19: Insights on Mortality and Underlying Myocardial Processes". Journal of Cardiac Failure. doi:10.1016/j.cardfail.2020.06.005. ISSN 1071-9164.
- ↑ Ye, Qing; Wang, Bili; Mao, Jianhua (2020). "The pathogenesis and treatment of the `Cytokine Storm' in COVID-19". Journal of Infection. 80 (6): 607–613. doi:10.1016/j.jinf.2020.03.037. ISSN 0163-4453.