COVID-19-associated stroke: Difference between revisions

Jump to navigation Jump to search
Line 108: Line 108:


* The majority of patients with [[COVID-19]]-associated [[stroke]] present with [[respiratory]] symptoms. ''e.g.'' [[cough]], [[shortness of breath]] ''etc''.
* The majority of patients with [[COVID-19]]-associated [[stroke]] present with [[respiratory]] symptoms. ''e.g.'' [[cough]], [[shortness of breath]] ''etc''.
* '''Three''' '''cases''' reported till now has specific [[clinical]] manifestations:
* ....reported till now has specific [[clinical]] manifestations:


{| class="wikitable"
|+
![[Patient]] No.
!Early [[symptoms]]
!Later presentation
![[Glasgow coma scale|GCS]]
|-
|1. 24-year-old man from '''Japan<ref name="pmid32251791" />'''
|[[Headache]],
[[Fever]],


[[Fatigue]]
|Worsening [[headache]], [[Sore throat|Sore throat.]] (Day 5)
Impaired [[consciousness]] and transient [[generalized seizure]], (Day 9)
|E4V1M1
|-
|2. 35-year-old woman from '''Turkey<ref name="pmid32479911" />'''
|[[Flu like]] symptoms
|[[Headache]], [[nausea]], [[dizziness]], and
drug-[[refractory]] [[seizure]]<nowiki/>s.
|E4V5M6
|-
|3. 31-year-old '''African American''' woman<ref name="pmid32487282">{{cite journal| author=Benameur K, Agarwal A, Auld SC, Butters MP, Webster AS, Ozturk T | display-authors=etal| title=Encephalopathy and Encephalitis Associated with Cerebrospinal Fluid Cytokine Alterations and Coronavirus Disease, Atlanta, Georgia, USA, 2020. | journal=Emerg Infect Dis | year= 2020 | volume= 26 | issue= 9 | pages=  | pmid=32487282 | doi=10.3201/eid2609.202122 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32487282  }}</ref>
|[[SCD]] patient with [[dyspnea]]
|[[Paralysis]] and [[sedation]] (Day 13)
[[Comatose]] (Day 15) and death (Day 16)
|E0V0M0
|}





Revision as of 07:39, 30 June 2020

WikiDoc Resources for COVID-19-associated stroke

Articles

Most recent articles on COVID-19-associated stroke

Most cited articles on COVID-19-associated stroke

Review articles on COVID-19-associated stroke

Articles on COVID-19-associated stroke in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on COVID-19-associated stroke

Images of COVID-19-associated stroke

Photos of COVID-19-associated stroke

Podcasts & MP3s on COVID-19-associated stroke

Videos on COVID-19-associated stroke

Evidence Based Medicine

Cochrane Collaboration on COVID-19-associated stroke

Bandolier on COVID-19-associated stroke

TRIP on COVID-19-associated stroke

Clinical Trials

Ongoing Trials on COVID-19-associated stroke at Clinical Trials.gov

Trial results on COVID-19-associated stroke

Clinical Trials on COVID-19-associated stroke at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on COVID-19-associated stroke

NICE Guidance on COVID-19-associated stroke

NHS PRODIGY Guidance

FDA on COVID-19-associated stroke

CDC on COVID-19-associated stroke

Books

Books on COVID-19-associated stroke

News

COVID-19-associated stroke in the news

Be alerted to news on COVID-19-associated stroke

News trends on COVID-19-associated stroke

Commentary

Blogs on COVID-19-associated stroke

Definitions

Definitions of COVID-19-associated stroke

Patient Resources / Community

Patient resources on COVID-19-associated stroke

Discussion groups on COVID-19-associated stroke

Patient Handouts on COVID-19-associated stroke

Directions to Hospitals Treating COVID-19-associated stroke

Risk calculators and risk factors for COVID-19-associated stroke

Healthcare Provider Resources

Symptoms of COVID-19-associated stroke

Causes & Risk Factors for COVID-19-associated stroke

Diagnostic studies for COVID-19-associated stroke

Treatment of COVID-19-associated stroke

Continuing Medical Education (CME)

CME Programs on COVID-19-associated stroke

International

COVID-19-associated stroke en Espanol

COVID-19-associated stroke en Francais

Business

COVID-19-associated stroke in the Marketplace

Patents on COVID-19-associated stroke

Experimental / Informatics

List of terms related to COVID-19-associated stroke

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Parul Pahal, M.B.B.S[2]

Synonyms and keywords:

Overview

Historical Perspective

Classification

Stroke can be classified into

  • ISCHEMIC STROKE: This can be due to
    • Thrombosis
    • Embolism
    • Systemic hypoperfusion
  • HEMORRHAGIC STROKE: This can be due to
    • Intracerebral hemorrhage
    • Subarachnoid hemorrhage

Pathophysiology

The exact pathogenesis of 'stroke in COVID-19' is not fully understood. However, the following explanation regarding pathogenesis is-

  • Sepsis induced coagulopathy in COVID-19 patients is thought to be contributing to microthromobosis.
  • The angiotensin-converting enzyme 2 (ACE2) receptors are also present in the brain. The ACE II receptors are present in the endothelial cells of the blood vessels in the brain. These receptors expressed in the brain are responsible for sympathoadrenal system regulation, and vascular autoregulation[1]. When the virus binds to these receptors, this vascular autoregulation is hampered and can lead to elevated blood pressure, eventually leading to rupture of the cerebral vessels and intracranial hemorrhage[2]. It does so by altering the balance of renin-angiotensin system which likely triggers endothelium dysfunction, organ damage, which eventually results in stroke[3].
  • Viral Neurotropism is another possible pathogenic mechanism for cerebrovascular accidents in COVID-19 patients. The coronaviruses usually cause mild respiratory illness, but the beta coronavirues are known to have a role in nervous system involvement[4]. The Novel coronavirus “severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)” is a beta coronavirus, similar to severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV)[5]. It,therefore, has infection mechanism and potential to invade the nervous system, similar to SARS-Cov and MERS-Cov[6]. The detection of virus in the cells of the brain on autopsy[7] (neural and capillary endothelial cells), and viral presence in the cerebrospinal fluid of the encephalitis patient infected with SARS-Cov-2[8] supports the neuro-invasiveness of the virus. The two possible routes are retrograde axonal transport (via nasal cavity) or hematogenous spread (via blood brain barrier endothelial cells)[7]. Once the virus reaches the brain, it attaches with the ACE II receptors.


Further investigations should be done to better understand the mechanism of Stroke in patients with COVID-19.

Causes

  • click here to read more about SARS-Cov-2 virus

Differentiating COVID-19-associated stroke from other Diseases

[Disease name] must be differentiated from other diseases that cause [clinical feature 1], [clinical feature 2], and [clinical feature 3], such as [differential dx1], [differential dx2], and [differential dx3].

OR

[Disease name] must be differentiated from [[differential dx1], [differential dx2], and [differential dx3].

Epidemiology and Demographics

The incidence of stroke in hospitalized COVID-19 patients is reported to be 0.9–2%.[9] The incidence of stroke in patients infected with SARS-Cov-2 virus was higher in younger men.[10]

Stroke is one of the neurological manifestations in patients with severe infection (Mao et al., 2020).

Risk Factors

There are no established risk factors for [disease name].

OR

The most potent risk factor in the development of [disease name] is [risk factor 1]. Other risk factors include [risk factor 2], [risk factor 3], and [risk factor 4].

OR

Common risk factors in the development of [disease name] include [risk factor 1], [risk factor 2], [risk factor 3], and [risk factor 4].

OR

Common risk factors in the development of [disease name] may be occupational, environmental, genetic, and viral.

Screening

There is insufficient evidence to recommend routine screening for [disease/malignancy].

OR

According to the [guideline name], screening for [disease name] is not recommended.

OR

According to the [guideline name], screening for [disease name] by [test 1] is recommended every [duration] among patients with [condition 1], [condition 2], and [condition 3].

Natural History, Complications, and Prognosis

If left untreated, [#]% of patients with [disease name] may progress to develop [manifestation 1], [manifestation 2], and [manifestation 3].

OR

Common complications of [disease name] include [complication 1], [complication 2], and [complication 3].

OR

Prognosis is generally excellent/good/poor, and the 1/5/10-year mortality/survival rate of patients with [disease name] is approximately [#]%.

Cerebral hemorrhage or ischemia disrupts cerebral perfusion and can lead to an acute neurologic condition, stroke. It is one of the neurological complications of SARS-Cov-2 infection, and is seen in critically ill COVID-19 patients. 5% of hospitalized COVID-19 patients with severe illness had acute stroke, with majority of patients with Ischemic stroke. The severe and critically ill patients when compared to moderate cases, had increased hypercoagulability and inflammatory markers. These patients are at higher risk for stroke. The better outcomes in critically ill patients who received prophylactic thrombolytic therapy points towards a possibility of hypercoagulability associated with COVID-19.[9]

Diagnosis

Diagnostic Study of Choice

The diagnosis of [disease name] is made when at least [number] of the following [number] diagnostic criteria are met: [criterion 1], [criterion 2], [criterion 3], and [criterion 4].

OR

The diagnosis of [disease name] is based on the [criteria name] criteria, which include [criterion 1], [criterion 2], and [criterion 3].

OR

The diagnosis of [disease name] is based on the [definition name] definition, which includes [criterion 1], [criterion 2], and [criterion 3].

OR

There are no established criteria for the diagnosis of [disease name].

History and Symptoms



The majority of patients with [disease name] are asymptomatic.

OR

The hallmark of [disease name] is [finding]. A positive history of [finding 1] and [finding 2] is suggestive of [disease name]. The most common symptoms of [disease name] include [symptom 1], [symptom 2], and [symptom 3]. Common symptoms of [disease] include [symptom 1], [symptom 2], and [symptom 3]. Less common symptoms of [disease name] include [symptom 1], [symptom 2], and [symptom 3].

Physical Examination

Patients with [disease name] usually appear [general appearance]. Physical examination of patients with [disease name] is usually remarkable for [finding 1], [finding 2], and [finding 3].

OR

Common physical examination findings of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

The presence of [finding(s)] on physical examination is diagnostic of [disease name].

OR

The presence of [finding(s)] on physical examination is highly suggestive of [disease name].

Laboratory Findings

An elevated/reduced concentration of serum/blood/urinary/CSF/other [lab test] is diagnostic of [disease name].

OR

Laboratory findings consistent with the diagnosis of [disease name] include [abnormal test 1], [abnormal test 2], and [abnormal test 3].

OR

[Test] is usually normal among patients with [disease name].

OR

Some patients with [disease name] may have elevated/reduced concentration of [test], which is usually suggestive of [progression/complication].

OR

There are no diagnostic laboratory findings associated with [disease name].

Electrocardiogram

There are no ECG findings associated with [disease name].

OR

An ECG may be helpful in the diagnosis of [disease name]. Findings on an ECG suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

X-ray

There are no x-ray findings associated with [disease name].

OR

An x-ray may be helpful in the diagnosis of [disease name]. Findings on an x-ray suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

There are no x-ray findings associated with [disease name]. However, an x-ray may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].

Echocardiography or Ultrasound

There are no echocardiography/ultrasound findings associated with [disease name].

OR

Echocardiography/ultrasound may be helpful in the diagnosis of [disease name]. Findings on an echocardiography/ultrasound suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

There are no echocardiography/ultrasound findings associated with [disease name]. However, an echocardiography/ultrasound may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].

CT scan

There are no CT scan findings associated with [disease name].

OR

[Location] CT scan may be helpful in the diagnosis of [disease name]. Findings on CT scan suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

There are no CT scan findings associated with [disease name]. However, a CT scan may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].

MRI

There are no MRI findings associated with [disease name].

OR

[Location] MRI may be helpful in the diagnosis of [disease name]. Findings on MRI suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

There are no MRI findings associated with [disease name]. However, a MRI may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].

Other Imaging Findings

There are no other imaging findings associated with [disease name].

OR

[Imaging modality] may be helpful in the diagnosis of [disease name]. Findings on an [imaging modality] suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

Other Diagnostic Studies

There are no other diagnostic studies associated with [disease name].

OR

[Diagnostic study] may be helpful in the diagnosis of [disease name]. Findings suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

Other diagnostic studies for [disease name] include [diagnostic study 1], which demonstrates [finding 1], [finding 2], and [finding 3], and [diagnostic study 2], which demonstrates [finding 1], [finding 2], and [finding 3].

Treatment

Medical Therapy

There is no treatment for [disease name]; the mainstay of therapy is supportive care.

OR

Supportive therapy for [disease name] includes [therapy 1], [therapy 2], and [therapy 3].

OR

The majority of cases of [disease name] are self-limited and require only supportive care.

OR

[Disease name] is a medical emergency and requires prompt treatment.

OR

The mainstay of treatment for [disease name] is [therapy].

OR

The optimal therapy for [malignancy name] depends on the stage at diagnosis.

OR

[Therapy] is recommended among all patients who develop [disease name].

OR

Pharmacologic medical therapy is recommended among patients with [disease subclass 1], [disease subclass 2], and [disease subclass 3].

OR

Pharmacologic medical therapies for [disease name] include (either) [therapy 1], [therapy 2], and/or [therapy 3].

OR

Empiric therapy for [disease name] depends on [disease factor 1] and [disease factor 2].

OR

Patients with [disease subclass 1] are treated with [therapy 1], whereas patients with [disease subclass 2] are treated with [therapy 2].

Surgery

Surgical intervention is not recommended for the management of [disease name].

OR

Surgery is not the first-line treatment option for patients with [disease name]. Surgery is usually reserved for patients with either [indication 1], [indication 2], and [indication 3]

OR

The mainstay of treatment for [disease name] is medical therapy. Surgery is usually reserved for patients with either [indication 1], [indication 2], and/or [indication 3].

OR

The feasibility of surgery depends on the stage of [malignancy] at diagnosis.

OR

Surgery is the mainstay of treatment for [disease or malignancy].

Primary Prevention

There are no established measures for the primary prevention of [disease name].

OR

There are no available vaccines against [disease name].

OR

Effective measures for the primary prevention of [disease name] include [measure1], [measure2], and [measure3].

OR

[Vaccine name] vaccine is recommended for [patient population] to prevent [disease name]. Other primary prevention strategies include [strategy 1], [strategy 2], and [strategy 3].

Secondary Prevention

There are no established measures for the secondary prevention of [disease name].

OR

Effective measures for the secondary prevention of [disease name] include [strategy 1], [strategy 2], and [strategy 3].

References

  1. Saavedra, Juan M. (2005). "Brain Angiotensin II: New Developments, Unanswered Questions and Therapeutic Opportunities". Cellular and Molecular Neurobiology. 25 (3–4): 485–512. doi:10.1007/s10571-005-4011-5. ISSN 0272-4340.
  2. Sharifi-Razavi, A.; Karimi, N.; Rouhani, N. (2020). "COVID-19 and intracerebral haemorrhage: causative or coincidental?". New Microbes and New Infections. 35: 100669. doi:10.1016/j.nmni.2020.100669. ISSN 2052-2975.
  3. Hess, David C.; Eldahshan, Wael; Rutkowski, Elizabeth (2020). "COVID-19-Related Stroke". Translational Stroke Research. 11 (3): 322–325. doi:10.1007/s12975-020-00818-9. ISSN 1868-4483.
  4. Arbour, Nathalie; Day, Robert; Newcombe, Jia; Talbot, Pierre J. (2000). "Neuroinvasion by Human Respiratory Coronaviruses". Journal of Virology. 74 (19): 8913–8921. doi:10.1128/JVI.74.19.8913-8921.2000. ISSN 1098-5514.
  5. Yu, Fei; Du, Lanying; Ojcius, David M.; Pan, Chungen; Jiang, Shibo (2020). "Measures for diagnosing and treating infections by a novel coronavirus responsible for a pneumonia outbreak originating in Wuhan, China". Microbes and Infection. 22 (2): 74–79. doi:10.1016/j.micinf.2020.01.003. ISSN 1286-4579.
  6. Li, Yan‐Chao; Bai, Wan‐Zhu; Hashikawa, Tsutomu (2020). "The neuroinvasive potential of SARS‐CoV2 may play a role in the respiratory failure of COVID‐19 patients". Journal of Medical Virology. 92 (6): 552–555. doi:10.1002/jmv.25728. ISSN 0146-6615.
  7. 7.0 7.1 Paniz‐Mondolfi, Alberto; Bryce, Clare; Grimes, Zachary; Gordon, Ronald E.; Reidy, Jason; Lednicky, John; Sordillo, Emilia Mia; Fowkes, Mary (2020). "Central nervous system involvement by severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2)". Journal of Medical Virology. 92 (7): 699–702. doi:10.1002/jmv.25915. ISSN 0146-6615.
  8. Moriguchi, Takeshi; Harii, Norikazu; Goto, Junko; Harada, Daiki; Sugawara, Hisanori; Takamino, Junichi; Ueno, Masateru; Sakata, Hiroki; Kondo, Kengo; Myose, Natsuhiko; Nakao, Atsuhito; Takeda, Masayuki; Haro, Hirotaka; Inoue, Osamu; Suzuki-Inoue, Katsue; Kubokawa, Kayo; Ogihara, Shinji; Sasaki, Tomoyuki; Kinouchi, Hiroyuki; Kojin, Hiroyuki; Ito, Masami; Onishi, Hiroshi; Shimizu, Tatsuya; Sasaki, Yu; Enomoto, Nobuyuki; Ishihara, Hiroshi; Furuya, Shiomi; Yamamoto, Tomoko; Shimada, Shinji (2020). "A first case of meningitis/encephalitis associated with SARS-Coronavirus-2". International Journal of Infectious Diseases. 94: 55–58. doi:10.1016/j.ijid.2020.03.062. ISSN 1201-9712.
  9. 9.0 9.1 Mao, Ling; Jin, Huijuan; Wang, Mengdie; Hu, Yu; Chen, Shengcai; He, Quanwei; Chang, Jiang; Hong, Candong; Zhou, Yifan; Wang, David; Miao, Xiaoping; Li, Yanan; Hu, Bo (2020). "Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China". JAMA Neurology. 77 (6): 683. doi:10.1001/jamaneurol.2020.1127. ISSN 2168-6149.
  10. Yaghi, Shadi; Ishida, Koto; Torres, Jose; Mac Grory, Brian; Raz, Eytan; Humbert, Kelley; Henninger, Nils; Trivedi, Tushar; Lillemoe, Kaitlyn; Alam, Shazia; Sanger, Matthew; Kim, Sun; Scher, Erica; Dehkharghani, Seena; Wachs, Michael; Tanweer, Omar; Volpicelli, Frank; Bosworth, Brian; Lord, Aaron; Frontera, Jennifer (2020). "SARS-CoV-2 and Stroke in a New York Healthcare System". Stroke. 51 (7): 2002–2011. doi:10.1161/STROKEAHA.120.030335. ISSN 0039-2499.


Template:WikiDoc Sources