COVID-19-associated stress cardiomyopathy: Difference between revisions

Jump to navigation Jump to search
Line 113: Line 113:
The presence of [finding(s)] on physical examination is highly suggestive of [disease name].
The presence of [finding(s)] on physical examination is highly suggestive of [disease name].


* The following physical examination findings may be seen in patients with stress cardiomyopathy:<ref name="pmid23073280">{{cite journal |vauthors=Y-Hassan S, Yamasaki K |title=History of takotsubo syndrome: is the syndrome really described as a disease entity first in 1990? Some inaccuracies |journal=Int. J. Cardiol. |volume=166 |issue=3 |pages=736–7 |year=2013 |pmid=23073280 |doi=10.1016/j.ijcard.2012.09.183 |url=}}</ref><ref name="pmid191064003">{{cite journal |vauthors=Akashi YJ, Goldstein DS, Barbaro G, Ueyama T |title=Takotsubo cardiomyopathy: a new form of acute, reversible heart failure |journal=Circulation |volume=118 |issue=25 |pages=2754–62 |year=2008 |pmid=19106400 |pmc=4893309 |doi=10.1161/CIRCULATIONAHA.108.767012 |url=}}</ref><ref name="pmid214014023">{{cite journal |vauthors=Omerovic E |title=How to think about stress-induced cardiomyopathy?--Think "out of the box"! |journal=Scand. Cardiovasc. J. |volume=45 |issue=2 |pages=67–71 |year=2011 |pmid=21401402 |doi=10.3109/14017431.2011.565794 |url=}}</ref><ref name="pmid182065213">{{cite journal |vauthors=Brenner ZR, Powers J |title=Takotsubo cardiomyopathy |journal=Heart Lung |volume=37 |issue=1 |pages=1–7 |year=2008 |pmid=18206521 |doi=10.1016/j.hrtlng.2006.12.003 |url=}}</ref><ref name="pmid197267763">{{cite journal |vauthors=Tsai TT, Nallamothu BK, Prasad A, Saint S, Bates ER |title=Clinical problem-solving. A change of heart |journal=N. Engl. J. Med. |volume=361 |issue=10 |pages=1010–6 |year=2009 |pmid=19726776 |doi=10.1056/NEJMcps0903023 |url=}}</ref><ref name="pmid280417122">{{cite journal |vauthors=Efferth T, Banerjee M, Paul NW |title=Broken heart, tako-tsubo or stress cardiomyopathy? Metaphors, meanings and their medical impact |journal=Int. J. Cardiol. |volume= |issue= |pages= |year=2016 |pmid=28041712 |doi=10.1016/j.ijcard.2016.12.129 |url=}}</ref><ref name="pmid155832282">{{cite journal |vauthors=Bybee KA, Kara T, Prasad A, Lerman A, Barsness GW, Wright RS, Rihal CS |title=Systematic review: transient left ventricular apical ballooning: a syndrome that mimics ST-segment elevation myocardial infarction |journal=Ann. Intern. Med. |volume=141 |issue=11 |pages=858–65 |year=2004 |pmid=15583228 |doi= |url=}}</ref><ref name="pmid114512582">{{cite journal |vauthors=Tsuchihashi K, Ueshima K, Uchida T, Oh-mura N, Kimura K, Owa M, Yoshiyama M, Miyazaki S, Haze K, Ogawa H, Honda T, Hase M, Kai R, Morii I |title=Transient left ventricular apical ballooning without coronary artery stenosis: a novel heart syndrome mimicking acute myocardial infarction. Angina Pectoris-Myocardial Infarction Investigations in Japan |journal=J. Am. Coll. Cardiol. |volume=38 |issue=1 |pages=11–8 |year=2001 |pmid=11451258 |doi= |url=}}</ref><ref name="pmid156871362">{{cite journal |vauthors=Sharkey SW, Lesser JR, Zenovich AG, Maron MS, Lindberg J, Longe TF, Maron BJ |title=Acute and reversible cardiomyopathy provoked by stress in women from the United States |journal=Circulation |volume=111 |issue=4 |pages=472–9 |year=2005 |pmid=15687136 |doi=10.1161/01.CIR.0000153801.51470.EB |url=}}</ref><ref name="pmid129230182">{{cite journal |vauthors=Desmet WJ, Adriaenssens BF, Dens JA |title=Apical ballooning of the left ventricle: first series in white patients |journal=Heart |volume=89 |issue=9 |pages=1027–31 |year=2003 |pmid=12923018 |pmc=1767823 |doi= |url=}}</ref><ref name="pmid261591082">{{cite journal |vauthors=Krishnamoorthy P, Garg J, Sharma A, Palaniswamy C, Shah N, Lanier G, Patel NC, Lavie CJ, Ahmad H |title=Gender Differences and Predictors of Mortality in Takotsubo Cardiomyopathy: Analysis from the National Inpatient Sample 2009-2010 Database |journal=Cardiology |volume=132 |issue=2 |pages=131–136 |year=2015 |pmid=26159108 |doi=10.1159/000430782 |url=}}</ref>
{| class="wikitable"
!Organ System
!Findings
!Suggestive Of
|-
! General appearance
|Patient may be [[anxious]], ill-appearing or [[diaphoretic]]
|
|-
!Vital signs
|
*[[Tachypnea]]
*[[Tachycardia]] or [[bradycardia]]
*[[Hypotension]]
|[[Cardiogenic shock]]
|-
!Cardiac
|[[Murmurs]], [[S3]], [[gallop rhythm]], [[Displaced point of maximal impulse|displaced PMI]]
|[[Heart failure]]
|-
!Respiratory
|[[Rales]], [[crackles]]
|[[Pulmonary edema]]
|}
===Laboratory Findings===
===Laboratory Findings===



Revision as of 23:42, 16 July 2020

WikiDoc Resources for COVID-19-associated stress cardiomyopathy

Articles

Most recent articles on COVID-19-associated stress cardiomyopathy

Most cited articles on COVID-19-associated stress cardiomyopathy

Review articles on COVID-19-associated stress cardiomyopathy

Articles on COVID-19-associated stress cardiomyopathy in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on COVID-19-associated stress cardiomyopathy

Images of COVID-19-associated stress cardiomyopathy

Photos of COVID-19-associated stress cardiomyopathy

Podcasts & MP3s on COVID-19-associated stress cardiomyopathy

Videos on COVID-19-associated stress cardiomyopathy

Evidence Based Medicine

Cochrane Collaboration on COVID-19-associated stress cardiomyopathy

Bandolier on COVID-19-associated stress cardiomyopathy

TRIP on COVID-19-associated stress cardiomyopathy

Clinical Trials

Ongoing Trials on COVID-19-associated stress cardiomyopathy at Clinical Trials.gov

Trial results on COVID-19-associated stress cardiomyopathy

Clinical Trials on COVID-19-associated stress cardiomyopathy at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on COVID-19-associated stress cardiomyopathy

NICE Guidance on COVID-19-associated stress cardiomyopathy

NHS PRODIGY Guidance

FDA on COVID-19-associated stress cardiomyopathy

CDC on COVID-19-associated stress cardiomyopathy

Books

Books on COVID-19-associated stress cardiomyopathy

News

COVID-19-associated stress cardiomyopathy in the news

Be alerted to news on COVID-19-associated stress cardiomyopathy

News trends on COVID-19-associated stress cardiomyopathy

Commentary

Blogs on COVID-19-associated stress cardiomyopathy

Definitions

Definitions of COVID-19-associated stress cardiomyopathy

Patient Resources / Community

Patient resources on COVID-19-associated stress cardiomyopathy

Discussion groups on COVID-19-associated stress cardiomyopathy

Patient Handouts on COVID-19-associated stress cardiomyopathy

Directions to Hospitals Treating COVID-19-associated stress cardiomyopathy

Risk calculators and risk factors for COVID-19-associated stress cardiomyopathy

Healthcare Provider Resources

Symptoms of COVID-19-associated stress cardiomyopathy

Causes & Risk Factors for COVID-19-associated stress cardiomyopathy

Diagnostic studies for COVID-19-associated stress cardiomyopathy

Treatment of COVID-19-associated stress cardiomyopathy

Continuing Medical Education (CME)

CME Programs on COVID-19-associated stress cardiomyopathy

International

COVID-19-associated stress cardiomyopathy en Espanol

COVID-19-associated stress cardiomyopathy en Francais

Business

COVID-19-associated stress cardiomyopathy in the Marketplace

Patents on COVID-19-associated stress cardiomyopathy

Experimental / Informatics

List of terms related to COVID-19-associated stress cardiomyopathy

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: José Eduardo Riceto Loyola Junior, M.D.[2]

Synonyms and keywords:

Overview

Historical Perspective

  • COVID-19-associated stress cardiomyopathy was first described by Elena Roca, an Italian physician, in April 2020.[1]

Classification

  • There is no established system for the classification of COVID-19-associated stress cardiomyopathy.

Pathophysiology

  • It is thought that COVID-19-associated stress cardiomyopathy is the result of extreme sympathetic stimulation due to abnormal release of catecholamines causing epicardial coronary vasospasm.
  • Many mechanisms occurring in COVID-19 patients may lead to myocardial injury and left ventricular dysfunction.[2]
  • One of the proposed theory is that patients may experience stress-induced adrenergic discharge as consequence of fever and inflammatory response to infection. One other factor to consider is the direct SARS-CoV-2 injury causing endothelial dysfunction, which may cause microvascular vasoconstriction that can manifest in a transient left ventricular apical dysfunction, (apical ballooning).[3]
  • Proposed mechanisms that have the potential to cause myocardial injury in acute coronavirus disease 2019 cardiovascular syndrome:[4]
 
 
 
 
 
 
 
 
 
 
 
 
 
Stress Induced Cardiomyopathy
 
 
 
 
 
 
 
 
 
 
 
Microvascular/Thrombotic Injury
 
 
 
 
 
 
 
 
Cytokine Storm
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Pre-existing CV Disease
 
 
 
 
 
Acute Myocardial Injury Characterized by Abnormal Troponin
 
 
 
 
 
Viral Myocarditis
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hypoxemia
 
 
 
 
 
 
 
 
Hypotension +/- Shock
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ventricular or Atrial Arrhythmias
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Causes

  • COVID-19-associated stress cardiomyopathy may be caused by a very intense sympathetic stimulation which is theorized to be caused either due to direct viral action or the ongoing psychological, economical and social effects (physical distancing rules, lack of social interaction) of the pandemic due to the imposed quarantine.[3]

Differentiating COVID-19-associated stress cardiomyopathy from other Diseases

  • COVID-19-associated stress cardiomyopathy must be differentiated from other diseases that cause left ventricular dysfunction such as acute myocardial infarction (STEMI and NSTEMI) and viral myocarditis.

Epidemiology and Demographics

  • The incidence of COVID-19-associated stress cardiomyopathy is approximately 7.8% of all patients presenting acute coronary syndrome.[3]
  • In comparison, the stress cardiomyopathy incidence in the pre-COVID-19 period was varying between 1.5-1.8%.[3]

Risk Factors

  • There are no established risk factors for COVID-19-associated stress cardiomyopathy.
  • Hypertension was, however, the most frequently comorbidity found across the groups in the COVID-19 period patients, as was hyperlipidemia.[3]

Screening

  • There is insufficient evidence to recommend routine screening for COVID-19-associated stress cardiomyopathy.

Natural History, Complications, and Prognosis

  • A study evaluated the outcomes for patients with stress cardiomyopathy. COVID-19-associated stress cardiomyopathy outcomes were similar to the stress cardiomyopathy not related to COVID-19 with regard to mortality and 30-day rehospitalization.[3]
  • The same study showed that COVID-19-associated stress cardiomyopathy patients had a significantly longer hospital length of stay. in comparison to the ones not related to COVID-19.[3]
  • Provided that patients survive the initial insult without any complications, most patients recover and have a normalized cardiac function within a few weeks.[5][6][7]

Diagnosis

Diagnostic Study of Choice

The diagnosis of [disease name] is made when at least [number] of the following [number] diagnostic criteria are met: [criterion 1], [criterion 2], [criterion 3], and [criterion 4].

OR

The diagnosis of [disease name] is based on the [criteria name] criteria, which include [criterion 1], [criterion 2], and [criterion 3].

OR

The diagnosis of [disease name] is based on the [definition name] definition, which includes [criterion 1], [criterion 2], and [criterion 3].

OR

There are no established criteria for the diagnosis of [disease name].

History and Symptoms

The majority of patients with [disease name] are asymptomatic.

OR

The hallmark of [disease name] is [finding]. A positive history of [finding 1] and [finding 2] is suggestive of [disease name]. The most common symptoms of [disease name] include [symptom 1], [symptom 2], and [symptom 3]. Common symptoms of [disease] include [symptom 1], [symptom 2], and [symptom 3]. Less common symptoms of [disease name] include [symptom 1], [symptom 2], and [symptom 3].

Physical Examination

Patients with [disease name] usually appear [general appearance]. Physical examination of patients with [disease name] is usually remarkable for [finding 1], [finding 2], and [finding 3].

OR

Common physical examination findings of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

The presence of [finding(s)] on physical examination is diagnostic of [disease name].

OR

The presence of [finding(s)] on physical examination is highly suggestive of [disease name].

Organ System Findings Suggestive Of
General appearance Patient may be anxious, ill-appearing or diaphoretic
Vital signs Cardiogenic shock
Cardiac Murmurs, S3, gallop rhythm, displaced PMI Heart failure
Respiratory Rales, crackles Pulmonary edema

Laboratory Findings

  • Laboratory findings consistent with the diagnosis of COVID-19-associated stress cardiomyopathy include elevated troponin and Pro-BNP.[3]

Electrocardiogram

There are no ECG findings associated with [disease name].

OR

An ECG may be helpful in the diagnosis of [disease name]. Findings on an ECG suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

X-ray

There are no x-ray findings associated with [disease name].

OR

An x-ray may be helpful in the diagnosis of [disease name]. Findings on an x-ray suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

There are no x-ray findings associated with [disease name]. However, an x-ray may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].

Echocardiography or Ultrasound

There are no echocardiography/ultrasound findings associated with [disease name].

OR

Echocardiography/ultrasound may be helpful in the diagnosis of [disease name]. Findings on an echocardiography/ultrasound suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

There are no echocardiography/ultrasound findings associated with [disease name]. However, an echocardiography/ultrasound may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].

CT scan

There are no CT scan findings associated with [disease name].

OR

[Location] CT scan may be helpful in the diagnosis of [disease name]. Findings on CT scan suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

There are no CT scan findings associated with [disease name]. However, a CT scan may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].

MRI

There are no MRI findings associated with [disease name].

OR

[Location] MRI may be helpful in the diagnosis of [disease name]. Findings on MRI suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

There are no MRI findings associated with [disease name]. However, a MRI may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].

Other Imaging Findings

There are no other imaging findings associated with [disease name].

OR

[Imaging modality] may be helpful in the diagnosis of [disease name]. Findings on an [imaging modality] suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

Other Diagnostic Studies

There are no other diagnostic studies associated with [disease name].

OR

[Diagnostic study] may be helpful in the diagnosis of [disease name]. Findings suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

Other diagnostic studies for [disease name] include [diagnostic study 1], which demonstrates [finding 1], [finding 2], and [finding 3], and [diagnostic study 2], which demonstrates [finding 1], [finding 2], and [finding 3].

Treatment

Medical Therapy

  • There is no treatment for specific treatment for stress cardiomyopathy when associated with COVID-19. The mainstay of therapy is supportive care, which is the same for the stress cardiomyopathy not related to COVID-19..
  • Medical therapy in patients with stress cardiomyopathy is mostly targeted towards the treatment of complications. For stress cardiomyopathy per se, the use of heparin and aspirin are controversial. It must be noted that the use of beta blockers alone is not advised, as this will result unopposed activity of catecholamines at the alpha receptors and can cause further prolongation of the QT interval. The combined use of alpha- and beta blockers is reasonable.[29]

Treatment of Complications

The following interventions are performed if their associated complications arise:[29][30][31]

Surgery

  • Surgical intervention is not recommended for the management of COVID-19-associated stress cardiomyopathy.

Primary Prevention

  • There are no established measures for the primary prevention of COVID-19-associated stress cardiomyopathy if a patient has acquired COVID-19 infection.
  • Preventive measures should be taken to avoid COVID-19 infection.

Secondary Prevention

  • There are no established measures for the secondary prevention of COVID-19-associated stress cardiomyopathy.

References

  1. Roca E, Lombardi C, Campana M, Vivaldi O, Bigni B, Bertozzi B; et al. (2020). "Takotsubo Syndrome Associated with COVID-19". Eur J Case Rep Intern Med. 7 (5): 001665. doi:10.12890/2020_001665. PMC 7213829 Check |pmc= value (help). PMID 32399453 Check |pmid= value (help).
  2. Pasqualetto MC, Secco E, Nizzetto M, Scevola M, Altafini L, Cester A; et al. (2020). "Stress Cardiomyopathy in COVID-19 Disease". Eur J Case Rep Intern Med. 7 (6): 001718. doi:10.12890/2020_001718. PMC 7279910 Check |pmc= value (help). PMID 32523926 Check |pmid= value (help).
  3. 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 Jabri A, Kalra A, Kumar A, Alameh A, Adroja S, Bashir H; et al. (2020). "Incidence of Stress Cardiomyopathy During the Coronavirus Disease 2019 Pandemic". JAMA Netw Open. 3 (7): e2014780. doi:10.1001/jamanetworkopen.2020.14780. PMC 7348683 Check |pmc= value (help). PMID 32644140 Check |pmid= value (help).
  4. Hendren NS, Drazner MH, Bozkurt B, Cooper LT (2020). "Description and Proposed Management of the Acute COVID-19 Cardiovascular Syndrome". Circulation. 141 (23): 1903–1914. doi:10.1161/CIRCULATIONAHA.120.047349. PMC 7314493 Check |pmc= value (help). PMID 32297796 Check |pmid= value (help).
  5. Akashi YJ, Goldstein DS, Barbaro G, Ueyama T (2008). "Takotsubo cardiomyopathy: a new form of acute, reversible heart failure". Circulation. 118 (25): 2754–62. doi:10.1161/CIRCULATIONAHA.108.767012. PMC 4893309. PMID 19106400.
  6. Prasad A, Lerman A, Rihal CS (2008). "Apical ballooning syndrome (Tako-Tsubo or stress cardiomyopathy): a mimic of acute myocardial infarction". Am. Heart J. 155 (3): 408–17. doi:10.1016/j.ahj.2007.11.008. PMID 18294473.
  7. Tsai TT, Nallamothu BK, Prasad A, Saint S, Bates ER (2009). "Clinical problem-solving. A change of heart". N. Engl. J. Med. 361 (10): 1010–6. doi:10.1056/NEJMcps0903023. PMID 19726776.
  8. Akashi YJ, Goldstein DS, Barbaro G, Ueyama T (2008). "Takotsubo cardiomyopathy: a new form of acute, reversible heart failure". Circulation. 118 (25): 2754–62. doi:10.1161/CIRCULATIONAHA.108.767012. PMC 4893309. PMID 19106400.
  9. Omerovic E (2011). "How to think about stress-induced cardiomyopathy?--Think "out of the box"!". Scand. Cardiovasc. J. 45 (2): 67–71. doi:10.3109/14017431.2011.565794. PMID 21401402.
  10. Brenner ZR, Powers J (2008). "Takotsubo cardiomyopathy". Heart Lung. 37 (1): 1–7. doi:10.1016/j.hrtlng.2006.12.003. PMID 18206521.
  11. Tsai TT, Nallamothu BK, Prasad A, Saint S, Bates ER (2009). "Clinical problem-solving. A change of heart". N. Engl. J. Med. 361 (10): 1010–6. doi:10.1056/NEJMcps0903023. PMID 19726776.
  12. Efferth T, Banerjee M, Paul NW (2016). "Broken heart, tako-tsubo or stress cardiomyopathy? Metaphors, meanings and their medical impact". Int. J. Cardiol. doi:10.1016/j.ijcard.2016.12.129. PMID 28041712.
  13. Bybee KA, Kara T, Prasad A, Lerman A, Barsness GW, Wright RS, Rihal CS (2004). "Systematic review: transient left ventricular apical ballooning: a syndrome that mimics ST-segment elevation myocardial infarction". Ann. Intern. Med. 141 (11): 858–65. PMID 15583228.
  14. Tsuchihashi K, Ueshima K, Uchida T, Oh-mura N, Kimura K, Owa M, Yoshiyama M, Miyazaki S, Haze K, Ogawa H, Honda T, Hase M, Kai R, Morii I (2001). "Transient left ventricular apical ballooning without coronary artery stenosis: a novel heart syndrome mimicking acute myocardial infarction. Angina Pectoris-Myocardial Infarction Investigations in Japan". J. Am. Coll. Cardiol. 38 (1): 11–8. PMID 11451258.
  15. Sharkey SW, Lesser JR, Zenovich AG, Maron MS, Lindberg J, Longe TF, Maron BJ (2005). "Acute and reversible cardiomyopathy provoked by stress in women from the United States". Circulation. 111 (4): 472–9. doi:10.1161/01.CIR.0000153801.51470.EB. PMID 15687136.
  16. Desmet WJ, Adriaenssens BF, Dens JA (2003). "Apical ballooning of the left ventricle: first series in white patients". Heart. 89 (9): 1027–31. PMC 1767823. PMID 12923018.
  17. Krishnamoorthy P, Garg J, Sharma A, Palaniswamy C, Shah N, Lanier G, Patel NC, Lavie CJ, Ahmad H (2015). "Gender Differences and Predictors of Mortality in Takotsubo Cardiomyopathy: Analysis from the National Inpatient Sample 2009-2010 Database". Cardiology. 132 (2): 131–136. doi:10.1159/000430782. PMID 26159108.
  18. Y-Hassan S, Yamasaki K (2013). "History of takotsubo syndrome: is the syndrome really described as a disease entity first in 1990? Some inaccuracies". Int. J. Cardiol. 166 (3): 736–7. doi:10.1016/j.ijcard.2012.09.183. PMID 23073280.
  19. Akashi YJ, Goldstein DS, Barbaro G, Ueyama T (2008). "Takotsubo cardiomyopathy: a new form of acute, reversible heart failure". Circulation. 118 (25): 2754–62. doi:10.1161/CIRCULATIONAHA.108.767012. PMC 4893309. PMID 19106400.
  20. Omerovic E (2011). "How to think about stress-induced cardiomyopathy?--Think "out of the box"!". Scand. Cardiovasc. J. 45 (2): 67–71. doi:10.3109/14017431.2011.565794. PMID 21401402.
  21. Brenner ZR, Powers J (2008). "Takotsubo cardiomyopathy". Heart Lung. 37 (1): 1–7. doi:10.1016/j.hrtlng.2006.12.003. PMID 18206521.
  22. Tsai TT, Nallamothu BK, Prasad A, Saint S, Bates ER (2009). "Clinical problem-solving. A change of heart". N. Engl. J. Med. 361 (10): 1010–6. doi:10.1056/NEJMcps0903023. PMID 19726776.
  23. Efferth T, Banerjee M, Paul NW (2016). "Broken heart, tako-tsubo or stress cardiomyopathy? Metaphors, meanings and their medical impact". Int. J. Cardiol. doi:10.1016/j.ijcard.2016.12.129. PMID 28041712.
  24. Bybee KA, Kara T, Prasad A, Lerman A, Barsness GW, Wright RS, Rihal CS (2004). "Systematic review: transient left ventricular apical ballooning: a syndrome that mimics ST-segment elevation myocardial infarction". Ann. Intern. Med. 141 (11): 858–65. PMID 15583228.
  25. Tsuchihashi K, Ueshima K, Uchida T, Oh-mura N, Kimura K, Owa M, Yoshiyama M, Miyazaki S, Haze K, Ogawa H, Honda T, Hase M, Kai R, Morii I (2001). "Transient left ventricular apical ballooning without coronary artery stenosis: a novel heart syndrome mimicking acute myocardial infarction. Angina Pectoris-Myocardial Infarction Investigations in Japan". J. Am. Coll. Cardiol. 38 (1): 11–8. PMID 11451258.
  26. Sharkey SW, Lesser JR, Zenovich AG, Maron MS, Lindberg J, Longe TF, Maron BJ (2005). "Acute and reversible cardiomyopathy provoked by stress in women from the United States". Circulation. 111 (4): 472–9. doi:10.1161/01.CIR.0000153801.51470.EB. PMID 15687136.
  27. Desmet WJ, Adriaenssens BF, Dens JA (2003). "Apical ballooning of the left ventricle: first series in white patients". Heart. 89 (9): 1027–31. PMC 1767823. PMID 12923018.
  28. Krishnamoorthy P, Garg J, Sharma A, Palaniswamy C, Shah N, Lanier G, Patel NC, Lavie CJ, Ahmad H (2015). "Gender Differences and Predictors of Mortality in Takotsubo Cardiomyopathy: Analysis from the National Inpatient Sample 2009-2010 Database". Cardiology. 132 (2): 131–136. doi:10.1159/000430782. PMID 26159108.
  29. 29.0 29.1 Omerovic E (2011). "How to think about stress-induced cardiomyopathy?--Think "out of the box"!". Scand. Cardiovasc. J. 45 (2): 67–71. doi:10.3109/14017431.2011.565794. PMID 21401402.
  30. Brenner ZR, Powers J (2008). "Takotsubo cardiomyopathy". Heart Lung. 37 (1): 1–7. doi:10.1016/j.hrtlng.2006.12.003. PMID 18206521.
  31. Bybee KA, Kara T, Prasad A, Lerman A, Barsness GW, Wright RS, Rihal CS (2004). "Systematic review: transient left ventricular apical ballooning: a syndrome that mimics ST-segment elevation myocardial infarction". Ann. Intern. Med. 141 (11): 858–65.


Template:WikiDoc Sources