Pediatric BLS: Difference between revisions

Jump to navigation Jump to search
Neepa Shah (talk | contribs)
Neepa Shah (talk | contribs)
/* Variables with the good prognostic outcome{{cite journal| author=de Caen AR, Maconochie IK, Aickin R, Atkins DL, Biarent D, Guerguerian AM | display-authors=etal| title=Part 6: Pediatric Basic Life Support and Pediatric Advanced Life Support: 2015 I...
Line 44: Line 44:
**[[CPR]] with [[Rescue breathing|rescue breaths]]- The above guidelines suggest better [[Neurology|neurological complications]] in children more than 1 year of age who were given [[CPR]] with the [[Rescue breathing|rescue breaths]] as compared to children who received Compression- only CPR for [[Sudden cardiac death|cardiac arrest]]
**[[CPR]] with [[Rescue breathing|rescue breaths]]- The above guidelines suggest better [[Neurology|neurological complications]] in children more than 1 year of age who were given [[CPR]] with the [[Rescue breathing|rescue breaths]] as compared to children who received Compression- only CPR for [[Sudden cardiac death|cardiac arrest]]


=== Variables with the good prognostic outcome<ref name="pmid26472853">{{cite journal| author=de Caen AR, Maconochie IK, Aickin R, Atkins DL, Biarent D, Guerguerian AM | display-authors=etal| title=Part 6: Pediatric Basic Life Support and Pediatric Advanced Life Support: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. | journal=Circulation | year= 2015 | volume= 132 | issue= 16 Suppl 1 | pages= S177-203 | pmid=26472853 | doi=10.1161/CIR.0000000000000275 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26472853  }} </ref> ===
=== Variables with the good prognostic outcome ===
Variables <ref name="pmid26472853">{{cite journal| author=de Caen AR, Maconochie IK, Aickin R, Atkins DL, Biarent D, Guerguerian AM | display-authors=etal| title=Part 6: Pediatric Basic Life Support and Pediatric Advanced Life Support: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. | journal=Circulation | year= 2015 | volume= 132 | issue= 16 Suppl 1 | pages= S177-203 | pmid=26472853 | doi=10.1161/CIR.0000000000000275 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26472853  }} </ref>  
*Age >1 year  
*Age >1 year  
*Shockable rhythm like [[ventricular fibrillation]]
*Shockable rhythm like [[ventricular fibrillation]]

Revision as of 05:28, 1 August 2020

Pediatric BLS Microchapters

Overview

Classification

Causes of Cardiac Arrest in Children

Goals of Resuscitation

Approach to a Suspected Patient of Cardiac or Respiratory Arrest

Basic Life Support Guidelines (Revised American Heart Association 2010 Guidelines)

General Consideration

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Neepa Shah, M.D.

Synonyms and keywords: BLS, Basic life support in children, Pediatric BLS.

Overview

Pediatric Basic Life Support is a life-saving skill comprising of high quality CPR (Cardiopulmonary Resuscitation) and Rescue Breadths with Artificial External Defibrillator (AED). Bystander CPR - Bystander resuscitation plays a key role in out of hospital CPR. A study by Maryam Y Naim et all found out communities, where bystander CPR is practiced, have better survival outcomes in children less than 18 years from out of hospital cardiac arrest(CA). Two studies (Total children 781) concluded that about half of the Cardio-Respiratory arrests in children under 12 months occur outside the hospital. Good Prognostic Factor upon arrival at the emergency department were short interval between arrest and arrival at the hospital, less than 20 minutes of resuscitation in the emergency department, less than 2 doses of epinephrine.

Classification

  • BLS can be classified as
    • BLS in Out of hospital cardiac arrest (OHCA)
    • BLS inpatient cardiac arrest (IHCA)

Causes of Cardiac Arrest in Children

Common causes of cardiac arrest (CA) in children include:

Goals of Resuscitation

The goal of resuscitation is to perform high- quality CPR and have a better neurological outcome post-discharge.[4][3][5]

High - quality CPR

Cardiopulmonary resuscitation comprises of effective chest compression and ventilation by rescue breath.

  • According to the AHA guidelines 2015,2017,2010, the following are the steps for high-quality CPR.
    • Rate - Rate of CPR is the frequency of the chest compressions in a minute the AHA guidelines recommend 100 compressions per minute.
    • Depth- For high-quality CPR, the depth of the compressions should be 4 cm for infants and 5 cm for children more than 1 year of age.
    • Chest recoil- Allow the chest to recoil during chest compression which allows blood to flow back to the heart and hence the to the other vital organs.
    • CPR with rescue breaths- The above guidelines suggest better neurological complications in children more than 1 year of age who were given CPR with the rescue breaths as compared to children who received Compression- only CPR for cardiac arrest

Variables with the good prognostic outcome

Variables [6]

The following tables provide the details of the different studies done to determine which factors during pediatric cardiac arrest resuscitation have a superior prognosis.[6]
OHCA - Out of hospital cardiac arrest.
ROSC- Return of spontaneous circulation.

Summary of studies for OHCA to determine age as a prognostic factor[7][8][9][10]
Age <1 year compared to >1 year Author Study details
30- Day survival with good neurological outcome Good prognosis associated in children >1 year Tetsuhisa Kitamura, MD Study group - 5158 Children (RR -2.4; 95% CI,1.7-3.4)
30-Day survival in age >1 year Good prognosis associated in children >1 year Tetsuhisa Kitamura, MD Study group- 5158 Children (RR- 1.5; 95% CI,1.3-1.8)
Survival to hospital discharge Good prognosis associated in children >1 year Dianne L. Atkins Study group- 621 Children (RR- 2.7; 95% CI,1.3-5.7)
Good prognosis associated in children >1 year Kelly D. Young Study group- 599 Children (RR- 1.3; 95% CI,0.8-2.1)
Good prognosis associated in children >1 year Moler, Frank W. MD Study group- 138 Children (RR- 1.4; 95% CI,0.8-2.4)
Summary of studies for OHCA to determine shockable rhythm vs non-shockable rhythm as a prognostic factor[7][7][8][10]
Shockable rhythm vs non-Shockable rhythm Author Study details
30- Day survival with good neurological outcome Good prognosis with shockable rhythm like VF Tetsuhisa Kitamura, MD Study group- 5170 Children (RR- 4.4; 95% CI,3.6-5.3)
30-Day survival Good prognosis with shockable rhythm like VF Tetsuhisa Kitamura, MD Study group- 5170 Children (RR- 9.0; 95% CI,6.7-12.3)
Survival to hospital discharge Good prognosis with shockable rhythm like VF Dianne L. Atkins Study group- 366 Children (RR- 4.0; 95% CI,1.8-8.9)
Good prognosis with a shockable rhythm like VF Moler, Frank W. MD Study group- 138 Children (RR- 2.7; 95% CI,1.3-5.6)

Approach to a Suspected Patient of Cardiac or Respiratory Arrest

According to the AHA guidelines [5] [11][5]

  • Look out for the safety of yourself as a bystander and the child/infant.
  • Call for help if alone and if 2 rescuers are present send one person to call the EMS (Emergency medical service) and get the AED(Automated external defibrillator).
  • Check for response ask "What is your name?" Can you hear me"
  • Check if the child is breathing,
    • If the child is breathing normally, don't do CPR.
    • If the child is not breathing or is gasping for air start CPR
  • Check for a pulse in an infant it is the Brachial pulse. For children above 1 year of age check the Femoral artery pulse or the Brachial pulse, not more than 10 seconds.
  • The new AHA guidelines in 2010,2015 have changed the order from "ABC" Airway, Breathing/ventilation, and Chest compressions (or Circulation) to "CAB" Compression (Circulation) Airway and Breathing/Ventilation.
  • High-quality chest compressions:
    • For infants - Place 2 fingers below the intermammary line not compressing any rib or xiphoid process and start compressions 100/minute and up to 4 cm or 1.5-inch depth in infants and 5 cm or 2-inch depth in children above 1 year.
    • Use two hands wrapped around the thorax for better grip depending on the size of the child to avoid exhaustion especially if its a lone rescuer.
    • If 2 people are there give 15 chest compressions followed by 2 rescue breaths. Interchange the position every 2 minutes if 2 people are present to avoid exhaustion and ensure high-quality CPR.
    • If there is a single person for CPR give 30 chest compressions followed by 2 rescue breaths.
    • CPR with rescue breaths has more survival benefit in children vs CPR- Only Compressions.
    • In children the majority of the cause for cardiac arrest is Asphyxia .
    • If the lone rescuer is not trained in ventilation then Compression only CPR can be done.
  • Ventilation
    • If you are a lone rescuer, follow 30 x 2 cycle which is 30 compressions with 2 breaths. Observe for a chest rise as you are giving ventilation.
    • Use the head tilt and chin lift method to open the airway for injured and non-injured children.
    • If there is no chest rise after mouth to mouth ventilation adjust the neck.
    • Infants- Follow mouth to mouth ventilation, pinch the nose to prevent air movement out of the nose.
      • Mouth to nose ventilation can also be administered, close the mouth to prevent air being lost in the mouth.
    • Children- Follow Mouth to Mouth ventilation with pinching the nose.
    • In each of the rescue breaths make sure the chest rises and quickly resume immediately compressions in 30 x 2 cycle if you are a lone rescuer for improving the survival

Basic Life Support Guidelines (Revised American Heart Association 2010 Guidelines)

Changes made in the new AHA guidelines 2010,2015,2017,2019

According to the 2010,2015,2017,2019 Pediatric BLS Guidelines, the following changes were made and are followed:[5][4][6][3][6][12][4][4][6]

Pediatric BLS algorithm for single and 2 or more rescuers

  • For single rescuers start with 30 compressions followed by 2 rescue breaths.
  • For 2 or more rescuers start with 15 compressions followed by 2 rescue breaths and then both rescuers should change the positions alternating between compressions and breathing every 2 minutes.

Change of order of A-B-C TO C-A-B

  • A-B-C is airway, breathing, and compressions in that order. C-A-B is compression, airway, and breathing.
  • This change was advised by the 2010 guidelines but in 2015 there is more evidence supporting this sequence of CPR.
  • Evidence
    • Manikin studies in both adults and children show a decrease in time to achieve the first chest compressions by following C-A-B compared to A-B-C.
    • The delay in getting to ventilation was of 6 seconds compared with the new C-A-B compared to A-B-C

Chest compression rate and the depth

  • Adult model for compression rate and depth is to be followed for pediatrics cases due to lack of evidence.
  • More studies need to be found for the pediatric rate of compressions.
  • A study by Sutton RM et al reported among 87 pediatric CPR of more than 8 years of age, found that compression depth greater than 51 mm for more than 60% of the compressions during 30-second epochs within the first 5 minutes was associated with improved 24-hour survival.

Compression-only (Hands-Only) CPR

General Consideration

  • Performing a high-quality CPR based on the above guidelines can save a child's life and improve neurological outcomes.
  • Every community should be encouraged to get BLS- trained to ensure any person is able to deliver high-quality CPR until the EMS arrives.

Limitations

  • C-A-B sequence change from A-B-C[6]
    • In order to accurately predict prognostic outcomes ROSC, survival to hospital admission, or survival to 180 days with the good neurologic outcome with respect to the C-A-B protocol there is a need for more pediatric clinical (human) studies in children as opposed to pediatric manikin studies.[6]
  • Chest compression depth[6]
    • Pediatric studies for the chest compression depth has a small sample size and the age of children is above 14 years in the adolescent phase which does not provide data for children less than 14 years and infants.
    • The hospital data for OHCA is not available for the depth of compression on different surfaces.

AED (Automated external defibrillator)

  • AED is a device that is useful in as it delivers shock and does not require the bystander or lay rescuer to recognize different types of heart rhythm.[13]
  • If you want to be trained in AED access this website by REDCROSS https://www.redcross.org/take-a-class/aed
  • If a manual defibrillator is not available an AED automated external defibrillator is used.
  • A study published by Ecker R et al concluded that older bystanders previously trained in AED are successfully able to deliver a shock for ventricular fibrillation with dispatcher assistance.
  • 2 minutes compression and ventilation cycle should be done before using the AED.
  • If there are 2 bystanders send one person to get the AED and one person should start CPR immediately.
  • A study by Dianne L.Atkinsa et all found the AED used in children less than 8 years of age is able to find both shockable rhythm with high sensitivity and high specificity.[14].

Steps to use AED[15][16][17][5][18] [19] [5][20]

  • Follow the AED Prompt.
  • Stop CPR when the AED is analyzing the rhythm and giving a shock.
  • Resume compressions immediately after giving shock and minimize interruptions during compressions.
  • Place the right pad of the AED on right below the clavicle.
  • Place the left pad of the AED on the left chest lateral to the left breast.
  • Other positions - Left pad is placed at the apex 5th Intercoastal space and the right pad placed on the left upper back.
  • Keep the one-inch distance between the pads and the implantable device.
  • Don't put the pads on a transdermal patch as it can burn the skin where the patch is placed.

Foreign Body Airway Obstruction(FBAO)

  • Foreign Body Airway Obstruction(FBAO) also known as choking is blocking the airway which comprises of the pharynx and trachea. Children less than 3 years are at risk of choking due to the still-developing phase for swallowing and chewing. Parents, teachers should keep an eye for objects like coins, toys, balloons, and other food.
  • A study by C S Harris et al concluded that one death due to choking occurred every 5 days the data was analyzed for infants and children from 0-9 years for a period of 3 years.
  • The choking was associated with high risk in children less than 5 years of age due to meat products.
  • Hot dog was the most common food identified along with hard candy, nuts.
  • Airway obstruction - Steps to follow
    • If the airway obstruction is mild, where the child is able to respond wait for the child to clear it and monitor for signs of severe obstruction.
    • If the airway obstruction is severe, where the child will be silent quickly start the Heimlich maneuver or subdiaphragmatic abdominal thrust for children.
    • For infants do 5 back blows followed by 5 compressions as abdominal thrust can damage the liver.
    • If the child/infant becomes unresponsive start CPR immediately.
      • After 1 cycle which will be 30 compressions check the airway if the foreign body is visible remove it but if it's not visible or accessible do not probe blindly as the foreign body can be displaced which will further damage the oropharynx.
      • Give 2 rescue breaths after compressions and continue with compressions and ventilation cycle until the foreign body is out.


Resuscitation in special circumstances

Child with a tracheostomy tube or stoma

Child with spinal trauma

  • Steps to follow in a pediatric trauma case with cardiac arrest.
  • Look for airway obstruction.
  • If there is bleeding try to tie a tourniquet and apply external pressure.
  • If spinal cord trauma is suspected try to avoid cervical spine movement.
    • In spinal cord trauma, ventilation should be done with caution apply jaw thrust and do not tilt head.
    • If the jaw thrust is not successful then one rescuer would minimize the motion of the cervical spine and the other rescuer should attempt to give rescue breadth by head still and chin lift method.
    • To achieve a neutral position for a child while in supine posture a study by Nypaver M et all mentions that the back needs to be elevated in children less than 7 years.
    • In children less than 7 years its found that they have a disproportionately large head compared to their full bodies and when in a supine position the neck gets flexed.
      • To prevent cervical motion changes should be made to the backboard.
      • Changes like Raise the chest by putting a double mattress pad or use a recess for the occiput to lower the head. [5] [5]

Child drowning

  • The rescuer should try to get the drowning child as soon as possible out of the water and start CPR after checking pulse and ventilation.[5]
  • If the rescuer has training in In water resuscitation start ventilation in water

Below is the IWR (In Water Resuscitation) guidelines

  • Check if the child is breathing or conscious in the water.
    • If the child is breathing quickly swim back and get the child out of the water.
    • If the child is not breathing then give rescue breaths if spinal trauma is suspected then try to immobilize the spine while opening the airway and try to reach the shore as soon as possible.
    • If the distance to reach the shore is more than 5 minutes, try to give one more rescue breath 12-16 breaths/minute.[5]

References

  1. Naim MY, Burke RV, McNally BF, Song L, Griffis HM, Berg RA; et al. (2017). "Association of Bystander Cardiopulmonary Resuscitation With Overall and Neurologically Favorable Survival After Pediatric Out-of-Hospital Cardiac Arrest in the United States: A Report From the Cardiac Arrest Registry to Enhance Survival Surveillance Registry". JAMA Pediatr. 171 (2): 133–141. doi:10.1001/jamapediatrics.2016.3643. PMID 27837587.
  2. Sahu S, Kishore K, Lata I (2010). "Better outcome after pediatric resuscitation is still a dilemma". J Emerg Trauma Shock. 3 (3): 243–50. doi:10.4103/0974-2700.66524. PMC 2938489. PMID 20930968.
  3. 3.0 3.1 3.2 Atkins DL, de Caen AR, Berger S, Samson RA, Schexnayder SM, Joyner BL; et al. (2018). "2017 American Heart Association Focused Update on Pediatric Basic Life Support and Cardiopulmonary Resuscitation Quality: An Update to the American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care". Circulation. 137 (1): e1–e6. doi:10.1161/CIR.0000000000000540. PMID 29114009.
  4. 4.0 4.1 4.2 4.3 Atkins DL, Berger S, Duff JP, Gonzales JC, Hunt EA, Joyner BL; et al. (2015). "Part 11: Pediatric Basic Life Support and Cardiopulmonary Resuscitation Quality: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care". Circulation. 132 (18 Suppl 2): S519–25. doi:10.1161/CIR.0000000000000265. PMID 26472999.
  5. 5.00 5.01 5.02 5.03 5.04 5.05 5.06 5.07 5.08 5.09 Berg MD, Schexnayder SM, Chameides L, Terry M, Donoghue A, Hickey RW; et al. (2010). "Part 13: pediatric basic life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care". Circulation. 122 (18 Suppl 3): S862–75. doi:10.1161/CIRCULATIONAHA.110.971085. PMC 3717258. PMID 20956229.
  6. 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 de Caen AR, Maconochie IK, Aickin R, Atkins DL, Biarent D, Guerguerian AM; et al. (2015). "Part 6: Pediatric Basic Life Support and Pediatric Advanced Life Support: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations". Circulation. 132 (16 Suppl 1): S177–203. doi:10.1161/CIR.0000000000000275. PMID 26472853.
  7. 7.0 7.1 7.2 Kitamura T, Iwami T, Kawamura T, Nagao K, Tanaka H, Nadkarni VM; et al. (2010). "Conventional and chest-compression-only cardiopulmonary resuscitation by bystanders for children who have out-of-hospital cardiac arrests: a prospective, nationwide, population-based cohort study". Lancet. 375 (9723): 1347–54. doi:10.1016/S0140-6736(10)60064-5. PMID 20202679.
  8. 8.0 8.1 Atkins DL, Everson-Stewart S, Sears GK, Daya M, Osmond MH, Warden CR; et al. (2009). "Epidemiology and outcomes from out-of-hospital cardiac arrest in children: the Resuscitation Outcomes Consortium Epistry-Cardiac Arrest". Circulation. 119 (11): 1484–91. doi:10.1161/CIRCULATIONAHA.108.802678. PMC 2679169. PMID 19273724.
  9. Young KD, Gausche-Hill M, McClung CD, Lewis RJ (2004). "A prospective, population-based study of the epidemiology and outcome of out-of-hospital pediatric cardiopulmonary arrest". Pediatrics. 114 (1): 157–64. doi:10.1542/peds.114.1.157. PMID 15231922.
  10. 10.0 10.1 Moler FW, Donaldson AE, Meert K, Brilli RJ, Nadkarni V, Shaffner DH; et al. (2011). "Multicenter cohort study of out-of-hospital pediatric cardiac arrest". Crit Care Med. 39 (1): 141–9. doi:10.1097/CCM.0b013e3181fa3c17. PMC 3297020. PMID 20935561.
  11. Marino BS, Tabbutt S, MacLaren G, Hazinski MF, Adatia I, Atkins DL; et al. (2018). "Cardiopulmonary Resuscitation in Infants and Children With Cardiac Disease: A Scientific Statement From the American Heart Association". Circulation. 137 (22): e691–e782. doi:10.1161/CIR.0000000000000524. PMID 29685887.
  12. Lubrano R, Cecchetti C, Bellelli E, Gentile I, Loayza Levano H, Orsini F; et al. (2012). "Comparison of times of intervention during pediatric CPR maneuvers using ABC and CAB sequences: a randomized trial". Resuscitation. 83 (12): 1473–7. doi:10.1016/j.resuscitation.2012.04.011. PMID 22579678.
  13. Ecker R, Rea TD, Meischke H, Schaeffer SM, Kudenchuk P, Eisenberg MS (2001). "Dispatcher assistance and automated external defibrillator performance among elders". Acad Emerg Med. 8 (10): 968–73. doi:10.1111/j.1553-2712.2001.tb01096.x. PMID 11581083.
  14. Atkins DL, Scott WA, Blaufox AD, Law IH, Dick M, Geheb F; et al. (2008). "Sensitivity and specificity of an automated external defibrillator algorithm designed for pediatric patients". Resuscitation. 76 (2): 168–74. doi:10.1016/j.resuscitation.2007.06.032. PMID 17765384.
  15. Field JM, Hazinski MF, Sayre MR, Chameides L, Schexnayder SM, Hemphill R; et al. (2010). "Part 1: executive summary: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care". Circulation. 122 (18 Suppl 3): S640–56. doi:10.1161/CIRCULATIONAHA.110.970889. PMID 20956217.
  16. Schmoldt A, Benthe HF, Haberland G (1975). "Digitoxin metabolism by rat liver microsomes". Biochem Pharmacol. 24 (17): 1639–41. PMID doi.org/10.1542/peds.2009-2862 Check |pmid= value (help).
  17. Harris CS, Baker SP, Smith GA, Harris RM (1984). "Childhood asphyxiation by food. A national analysis and overview". JAMA. 251 (17): 2231–5. PMID 6708272.
  18. Nypaver M, Treloar D (1994). "Neutral cervical spine positioning in children". Ann Emerg Med. 23 (2): 208–11. doi:10.1016/s0196-0644(94)70032-x. PMID 8304600.
  19. Herzenberg JE, Hensinger RN, Dedrick DK, Phillips WA (1989). "Emergency transport and positioning of young children who have an injury of the cervical spine. The standard backboard may be hazardous". J Bone Joint Surg Am. 71 (1): 15–22. PMID 2912996.
  20. Szpilman D, Soares M (2004). "In-water resuscitation--is it worthwhile?". Resuscitation. 63 (1): 25–31. doi:10.1016/j.resuscitation.2004.03.017. PMID 15451583.


Template:WH Template:WS