Metabolic acidosis medical therapy: Difference between revisions

Jump to navigation Jump to search
Line 20: Line 20:
<br />
<br />


===General Management===
===<u>General Management:</u>===
  ECLS Approach to Management of Metabolic Acidosis
  ECLS Approach to Management of Metabolic Acidosis
{| class="wikitable"
{| class="wikitable"
Line 40: Line 40:
|}
|}


===Specific Treatment:===
===<u>Specific Treatment:</u>===




Line 46: Line 46:


Restoration of adequate intravascular volume and proper peripheral  perfusion is necessary for metabolic acidosis caused by lactic acidosis.
Restoration of adequate intravascular volume and proper peripheral  perfusion is necessary for metabolic acidosis caused by lactic acidosis.
==== Alcohol Intoxication: ====
Administration of fomepizole or ethanol to inhibit alcohol dehydrogenase, a critical enzyme in metabolism of the alcohols, is beneficial in treatment of ethylene glycol and methanol intoxication and possibly diethylene glycol and propylene glycol intoxication.
Dialysis to remove the unmetabolized alcohol and possibly the organic acid anion can be helpful in treatment of several of the alcohol-related intoxications.
{| class="wikitable"
{| class="wikitable"
|+
|+
Line 57: Line 62:
Simple to use bicarbonate  
Simple to use bicarbonate  
|It should be administered slowly as an isosmotic solution to avoid hyperosmolality and minimize the extent of intracellular acidosis
|It should be administered slowly as an isosmotic solution to avoid hyperosmolality and minimize the extent of intracellular acidosis
|Might exacerbate intracellular acidosis; can provide large sodium load  
|Might exacerbate intracellular acidosis; can provide large sodium load
|-
|-
|Intravenous THAM
|Intravenous THAM
|Buffers protons without generating CO;2 penetrates cells to buffer pH,  
|Buffers protons without generating CO;2 penetrates cells to buffer pH,
|Given as 0.3M solution, best to give through a central vein; serum potassium and PCO2 should be monitored carefully during therapy  
|Given as 0.3M solution, best to give through a central vein; serum potassium and PCO2 should be monitored carefully during therapy
|hyperkalaemia,
|hyperkalaemia,
hypercapnia,  
hypercapnia,  
Line 67: Line 72:
liver necrosis in newborns
liver necrosis in newborns
|-
|-
|Intravenous carbicarb  
|Intravenous carbicarb
|It preserves cardiac contractility in animal studies, human practice not done.
|It preserves cardiac contractility in animal studies, human practice not done.
|Under-study
|Under-study
|under-study
|under-study
|-
|-
|Dialysis  
|Dialysis
|Can provide large quantities of base while preventing volume overload or hyperosmolality; CRRT can deliver base over 24 h period at low rate
|Can provide large quantities of the base while preventing volume overload or hyperosmolality; continuous renal replacement therapy can deliver base over 24 hour period at a low rate.
Dialysis to remove the unmetabolized alcohol and possibly the organic acid anion can be helpful in treatment of several of the alcohol-related intoxications
|Continuous renal replacement therapy is preferred over intermittent hemodialysis
|Continuous renal replacement therapy is preferred over intermittent hemodialysis
|Requires use of dialysis equipment and personnel;  
|Requires use of dialysis equipment and personnel;  
Line 128: Line 134:
*
*


=== Experimental treatment:<ref name="pmid229454902">{{cite journal| author=Kraut JA, Madias NE| title=Treatment of acute metabolic acidosis: a pathophysiologic approach. | journal=Nat Rev Nephrol | year= 2012 | volume= 8 | issue= 10 | pages= 589-601 | pmid=22945490 | doi=10.1038/nrneph.2012.186 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22945490  }}</ref> ===
===<u>Experimental treatment:</u><ref name="pmid229454902">{{cite journal| author=Kraut JA, Madias NE| title=Treatment of acute metabolic acidosis: a pathophysiologic approach. | journal=Nat Rev Nephrol | year= 2012 | volume= 8 | issue= 10 | pages= 589-601 | pmid=22945490 | doi=10.1038/nrneph.2012.186 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22945490  }}</ref>===
Small animal studies of various models of shock and lactic acidosis demonstrated improved cardiac function, reduced mortality, and decreased generation of pro-inflammatory cytokines; human studies yet to be performed, so options include as follows:<ref name="pmid22945490">{{cite journal| author=Kraut JA, Madias NE| title=Treatment of acute metabolic acidosis: a pathophysiologic approach. | journal=Nat Rev Nephrol | year= 2012 | volume= 8 | issue= 10 | pages= 589-601 | pmid=22945490 | doi=10.1038/nrneph.2012.186 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22945490  }}</ref>
Small animal studies of various models of shock and lactic acidosis demonstrated improved cardiac function, reduced mortality, and decreased generation of pro-inflammatory cytokines; human studies yet to be performed, so options include as follows:<ref name="pmid22945490">{{cite journal| author=Kraut JA, Madias NE| title=Treatment of acute metabolic acidosis: a pathophysiologic approach. | journal=Nat Rev Nephrol | year= 2012 | volume= 8 | issue= 10 | pages= 589-601 | pmid=22945490 | doi=10.1038/nrneph.2012.186 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22945490  }}</ref>


# Dichloroacetate
#Dichloroacetate
# Administration of selective inhibitors Na+-H+ Exchanger 1 or amilonde analogues
#Administration of selective inhibitors Na+-H+ Exchanger 1 or amilonde analogues
# Administration of inhibitors of transient receptor potential vanilloid 1
#Administration of inhibitors of transient receptor potential vanilloid 1
# Administration of selective inhibitors acid sensing Ion channel la
#Administration of selective inhibitors acid sensing Ion channel la
# Administration of inhibitors of mitogen activated protein kinase
#Administration of inhibitors of mitogen activated protein kinase


====Contraindicated medications====
====Contraindicated medications====

Revision as of 16:08, 30 January 2021



Resident
Survival
Guide
File:Physician Extender Algorithms.gif

Metabolic acidosis Microchapters

Home

Patient Information

Overview

Classification

Pathophysiology

Causes

Differentiating Metabolic Acidosis from other Diseases

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Metabolic acidosis medical therapy On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Metabolic acidosis medical therapy

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Metabolic acidosis medical therapy

CDC on Metabolic acidosis medical therapy

Metabolic acidosis medical therapy in the news

Blogs on Metabolic acidosis medical therapy

Directions to Hospitals Treating Metabolic acidosis

Risk calculators and risk factors for Metabolic acidosis medical therapy

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Please help WikiDoc by adding content here. It's easy! Click here to learn about editing.

Overview

A pH under 7.1 is an emergency, due to the risk of cardiac arrhythmias, and may warrant treatment with intravenous bicarbonate. Bicarbonate is given at 50-100 mmol at a time under scrupulous monitoring of the arterial blood gas readings. This intervention however, is not effective in case of lactic acidosis. If the acidosis is particularly severe and/or there may be intoxication, consultation with the nephrology team is considered useful, as dialysis may clear both the intoxication and the acidosis.


General Management:

ECLS Approach to Management of Metabolic Acidosis
ECLS Approach to Management of Metabolic Acidosis
Emergency: intubation and ventilation for airway or ventilatory control; Cardiopulmonary resuscitation: Severe hyperkalemia
Cause: Treat the underlying disorder as the primary therapeutic goal. Consequently, an accurate diagnosis of the cause of metabolic acidosis is very important.
Losses: Replace losses (e.g. fluids and electrolytes) where appropriate. Other supportive care (oxygen administration) is useful. In most cases, IV sodium bicarbonate is not necessary, and may even be harmful so is not generally recommended.
Specifics: There are often specific problems or complications associated with specific causes or specific cases that require specific management. For example, Ethanol blocking treatment with methanol ingestion; rhabdomyolysis requires management by IV fluids and uricosurics agents for preventing acute renal failure; hemodialysis can remove some nephrotoxins

Specific Treatment:

Administration of bicarbonates and dialysis is required for metabolic acidosis that is associated with Renal failure.[1]

Restoration of adequate intravascular volume and proper peripheral perfusion is necessary for metabolic acidosis caused by lactic acidosis.

Alcohol Intoxication:

Administration of fomepizole or ethanol to inhibit alcohol dehydrogenase, a critical enzyme in metabolism of the alcohols, is beneficial in treatment of ethylene glycol and methanol intoxication and possibly diethylene glycol and propylene glycol intoxication.

Dialysis to remove the unmetabolized alcohol and possibly the organic acid anion can be helpful in treatment of several of the alcohol-related intoxications.

Base administration in the treatment of acute metabolic acidosis Benefits Description side-effects
Intravenous sodium bicarbonate Inexpensive

Simple to use bicarbonate

It should be administered slowly as an isosmotic solution to avoid hyperosmolality and minimize the extent of intracellular acidosis Might exacerbate intracellular acidosis; can provide large sodium load
Intravenous THAM Buffers protons without generating CO;2 penetrates cells to buffer pH, Given as 0.3M solution, best to give through a central vein; serum potassium and PCO2 should be monitored carefully during therapy hyperkalaemia,

hypercapnia,

liver necrosis in newborns

Intravenous carbicarb It preserves cardiac contractility in animal studies, human practice not done. Under-study under-study
Dialysis Can provide large quantities of the base while preventing volume overload or hyperosmolality; continuous renal replacement therapy can deliver base over 24 hour period at a low rate.

Dialysis to remove the unmetabolized alcohol and possibly the organic acid anion can be helpful in treatment of several of the alcohol-related intoxications

Continuous renal replacement therapy is preferred over intermittent hemodialysis Requires use of dialysis equipment and personnel;

hypotension can occur during procedure


Treatment of Diabetic-ketoacidosis
  • DKA is managed in an intensive care unit during the first day is always advisable
  • Fluid, Insulin and electrolyte replacement are most crucial for DKA management.
  • Correction of fluid loss with intravenous fluids only , Correction of hyperglycemia with insulin, Correction of electrolyte disturbances, particularly potassium loss is < 5.5, Correction of acid-base balance by bicarbonate if <7.1, Treatment of concurrent infection by antibiotics, if present.
MANAGEMENT OF DKA AND HHS
IV fluids Hight flow 0.9% normal saline is recommended and should be continued until corrected sodium is <135 mg/dl. Switch to .45% normal saline when Sodium >135 mg/dl.

Add dextrose into 0.45% normal saline when serum glucose <200 mg/dl and sodium <135.

Insulin Initiate continuous IV regular insulin infusion

Switch to subcutaneous basal bolus insulin for the following :

  1. able to eat
  2. glucose <200 mg/dl
  3. anion gap <12 mEq/L
  4. serum bicarbonate > 15 mEq/L
  5. pH > 7.3

Overlap subcutaneous and IV insulin by 1-2 hours.

Potassium Add IV potassium if serum potassium <5.2 mEq/L

Hold insulin for serum potassium <3.3 mEq/L

Nearly all patients are potassium depleted, even with hyperkalemia

Bicarbonates Consider for patients with pH<6.9, Bicarbonate<5 and severe hyperkalemia. But mostly it is avoided as it is cause of cerebral edema in children.
phosphate Consider for serum phosphate <1 mg/dl, cardiac dysfunction, or respiratory depression

Monitor serum calcium frequently

Experimental treatment:[2]

Small animal studies of various models of shock and lactic acidosis demonstrated improved cardiac function, reduced mortality, and decreased generation of pro-inflammatory cytokines; human studies yet to be performed, so options include as follows:[3]

  1. Dichloroacetate
  2. Administration of selective inhibitors Na+-H+ Exchanger 1 or amilonde analogues
  3. Administration of inhibitors of transient receptor potential vanilloid 1
  4. Administration of selective inhibitors acid sensing Ion channel la
  5. Administration of inhibitors of mitogen activated protein kinase

Contraindicated medications

Metabolic acidosis is considered an absolute contraindication to the use of the following medications:

References

  1. Kraut JA, Madias NE (2012). "Treatment of acute metabolic acidosis: a pathophysiologic approach". Nat Rev Nephrol. 8 (10): 589–601. doi:10.1038/nrneph.2012.186. PMID 22945490.
  2. Kraut JA, Madias NE (2012). "Treatment of acute metabolic acidosis: a pathophysiologic approach". Nat Rev Nephrol. 8 (10): 589–601. doi:10.1038/nrneph.2012.186. PMID 22945490.
  3. Kraut JA, Madias NE (2012). "Treatment of acute metabolic acidosis: a pathophysiologic approach". Nat Rev Nephrol. 8 (10): 589–601. doi:10.1038/nrneph.2012.186. PMID 22945490.

Template:WH Template:WS