Sudden cardiac death electrocardiogram: Difference between revisions
Jose Loyola (talk | contribs) |
Jose Loyola (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
__NOTOC__ | __NOTOC__ | ||
{{Sudden cardiac death}} | {{Sudden cardiac death}} | ||
{{CMG}} {{AE}} {{Sara.Zand}} | {{CMG}} {{AE}} {{Sara.Zand}} {{Jose}} | ||
==Overview== | ==Overview== |
Revision as of 12:04, 7 June 2021
Sudden cardiac death Microchapters |
Diagnosis |
---|
Sudden cardiac death electrocardiogram On the Web |
American Roentgen Ray Society Images of Sudden cardiac death electrocardiogram |
Risk calculators and risk factors for Sudden cardiac death electrocardiogram |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Sara Zand, M.D.[2] José Eduardo Riceto Loyola Junior, M.D.[3]
Overview
An ECG may be helpful in the diagnosis of Sudden cardiac death. Findings on ECG associated with sudden cardiac arrest include Sinus tachycardia (39%), abnormal T-wave inversions (30%), prolonged QT interval (26%), left/right atrial abnormality (22%), left ventricular hypertrophy (17%), abnormal frontal QRS axis (17%), delayed QRS-transition zone in precordial leads (13%), pathological Q waves (13%), intraventricular conduction delays (9%), multiple premature ventricular contractions (9%), normal ECG (9%).
Electrocardiogram
An ECG may be helpful in the diagnosis of Sudden cardiac death. Findings on ECG associated with sudden cardiac arrest may include:[1]
- Sinus tachycardia (39%)
- Abnormal T-wave inversions (30%)
- Prolonged QT interval (26%)
- Left/right atrial abnormality (22%)
- LVH (17%)
- Abnormal frontal QRS axis (17%)
- Delayed QRS-transition zone in precordial leads (13%)
- Pathological Q waves (13%)
- intraventricular conduction delays (9%)
- Multiple premature ventricular contractions (9%)
- Normal ECG (9%)
A recently published case report demonstrated a cardiac arrest happening due to a very unusual cause. It was triggered by the increased parasympathethic tone during defecation. The successive changes that were observed on ECG were in this order: prolonged PR interval, 2:1 atrioventricular block, sinus bradycardia and complete heart block. These findings supported the occurrence of a central mechanism in this cardiac arrest.[2]
2017AHA/ACC/HRS Guideline for management of sudden cardiac arrest and ventricular arrhythmia
Class I (Level of Evidence: B) |
|
Class of recommendation | Level of evidence | Recommendation for ECG and exercise tredmile test |
---|---|---|
1 | B | In patients with wide complex tachycardia and hemodynamically stable, 12 leads ECG should be obtained |
1 | B | Exercise stress test should be obtained in patients suspected arrhythmia-related exercise such as ischemic heart disease or cathecolaminergic polymorphic ventricular tachycardia |
1 | B | In patients with documented ventricular arrhythmia, 12 leads ECG should be obtained during sinus rhythm for evaluation of underlying heart disease |
References
- ↑ Jayaraman, Reshmy; Reinier, Kyndaron; Nair, Sandeep; Aro, Aapo L.; Uy-Evanado, Audrey; Rusinaru, Carmen; Stecker, Eric C.; Gunson, Karen; Jui, Jonathan; Chugh, Sumeet S. (2018). "Risk Factors of Sudden Cardiac Death in the Young". Circulation. 137 (15): 1561–1570. doi:10.1161/CIRCULATIONAHA.117.031262. ISSN 0009-7322.
- ↑ Tsushima T, Patel TR, Sahadevan J (2021). "Unusual Cause of Cardiac Arrest". JAMA Intern Med. 181 (4): 542–543. doi:10.1001/jamainternmed.2020.8370. PMID 33464284 Check
|pmid=
value (help). - ↑ Al-Khatib, Sana M.; Stevenson, William G.; Ackerman, Michael J.; Bryant, William J.; Callans, David J.; Curtis, Anne B.; Deal, Barbara J.; Dickfeld, Timm; Field, Michael E.; Fonarow, Gregg C.; Gillis, Anne M.; Granger, Christopher B.; Hammill, Stephen C.; Hlatky, Mark A.; Joglar, José A.; Kay, G. Neal; Matlock, Daniel D.; Myerburg, Robert J.; Page, Richard L. (2018). "2017 AHA/ACC/HRS Guideline for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death". Circulation. 138 (13). doi:10.1161/CIR.0000000000000549. ISSN 0009-7322.