Peripartum mood disturbances pathophysiology: Difference between revisions

Jump to navigation Jump to search
Line 19: Line 19:
**[[Hemicentin 1 gene]] [[Hemicentin 1|(HMNC1]]) and its association with [[postpartum]] [[depression]]<ref name="pmid21912392">{{cite journal |vauthors=Bouma EM, Riese H, Doornbos B, Ormel J, Oldehinkel AJ |title=Genetically based reduced MAOA and COMT functioning is associated with the cortisol stress response: a replication study |journal=Mol Psychiatry |volume=17 |issue=2 |pages=119–21 |date=February 2012 |pmid=21912392 |doi=10.1038/mp.2011.115 |url=}}</ref>.
**[[Hemicentin 1 gene]] [[Hemicentin 1|(HMNC1]]) and its association with [[postpartum]] [[depression]]<ref name="pmid21912392">{{cite journal |vauthors=Bouma EM, Riese H, Doornbos B, Ormel J, Oldehinkel AJ |title=Genetically based reduced MAOA and COMT functioning is associated with the cortisol stress response: a replication study |journal=Mol Psychiatry |volume=17 |issue=2 |pages=119–21 |date=February 2012 |pmid=21912392 |doi=10.1038/mp.2011.115 |url=}}</ref>.


*[[Epigenetic]] mechanisms of [[postpartum depression]]<br>
*[[Epigenetic]] mechanisms of [[postpartum depression]]<ref name="pmid23689534">{{cite journal |vauthors=Guintivano J, Arad M, Gould TD, Payne JL, Kaminsky ZA |title=Antenatal prediction of postpartum depression with blood DNA methylation biomarkers |journal=Mol Psychiatry |volume=19 |issue=5 |pages=560–7 |date=May 2014 |pmid=23689534 |pmc=7039252 |doi=10.1038/mp.2013.62 |url=}}</ref><br>
**In women with [[postpartum depression]], there was a substantial interaction between [[OXTR]] [[DNA methylation]], [[estradiol]], and the ratio of [[allopregnanolone]] to [[progesterone]].Alterations in [[DNA methylation]] of the [[OXTR gene]] are adversely linked with [[blood]] [[estradiol]] levels in women with [[postpartum depression]].
**In women with [[postpartum depression]], there was a substantial interaction between [[OXTR]] [[DNA methylation]], [[estradiol]], and the ratio of [[allopregnanolone]] to [[progesterone]].Alterations in [[DNA methylation]] of the [[OXTR gene]] are adversely linked with [[blood]] [[estradiol]] levels in women with [[postpartum depression]].
**As a result, [[epigenetic]] alterations can affect [[metabolic]] processes linked to [[postpartum depression]].
**As a result, [[epigenetic]] alterations can affect [[metabolic]] processes linked to [[postpartum depression]].

Revision as of 19:38, 4 August 2021

Peripartum mood disturbances Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Peripartum mood disturbances from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Interventions

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Peripartum mood disturbances pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Peripartum mood disturbances pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Peripartum mood disturbances pathophysiology

CDC on Peripartum mood disturbances pathophysiology

Peripartum mood disturbances pathophysiology in the news

Blogs on Peripartum mood disturbances pathophysiology

Directions to Hospitals Treating Psoriasis

Risk calculators and risk factors for Peripartum mood disturbances pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Sunita Kumawat, M.B.B.S[2]

Overview

Peripartum mood disturbances are mainly the mood alterations or changes seen in the women during and after the delivery. It involes the complex pathophysiology which is regulated by expression of different genes and neuroendocrine hormones. The gens playing important role are mainly Estrogen receptor alpha gene Polymorphisms in the serotonin transporter gene, 5-HTTgene encoding for MAOA and the gene encoding for Catechol-O-methyltransferase (COMT), Genetic variants for the TPH2 gene, SNP in OXT; SNP in the OXTR gene and methylation state was detected in association with postpartum depression. Hemicentin 1 gene (HMNC1) along with the neuroendocrine hormones maily GABA, Glutamate, serotonin and , or dopamine.

Pathophysiology

Pathophysiology Of Peripartum mood disturbances- Pathophysiology of Peripartum mood disturbances includes the role of various genes and hormones as described below


GABA Glutamate Serotonin Dopamine
GABA which is an inhibitory neurotransmitter in the brain Glutamate is the excitatory neurotransmitter in the brain Serotonin to 5HT1A receptors is decreased in the following brain regions Mutations in DR1
Level is inversely related with the depression symptoms in the postpartum period postpartum depression its level are increased in the medial prefrontal cortex mesiotemporal and anterior cingulate cortices. Relates to the attention and affection of mother for the baby
In postpartum depression decreased in the dorsolateral prefrontal cortex.

References

  1. Payne JL, Maguire J (January 2019). "Pathophysiological mechanisms implicated in postpartum [[depression]]". Front Neuroendocrinol. 52: 165–180. doi:10.1016/j.yfrne.2018.12.001. PMC 6370514. PMID 30552910. URL–wikilink conflict (help)
  2. Mehta D, Newport DJ, Frishman G, Kraus L, Rex-Haffner M, Ritchie JC, Lori A, Knight BT, Stagnaro E, Ruepp A, Stowe ZN, Binder EB (August 2014). "Early predictive biomarkers for postpartum depression point to a role for estrogen receptor signaling". Psychol Med. 44 (11): 2309–22. doi:10.1017/S0033291713003231. PMID 24495551.
  3. Binder EB, Newport DJ, Zach EB, Smith AK, Deveau TC, Altshuler LL, Cohen LS, Stowe ZN, Cubells JF (July 2010). "A serotonin transporter gene polymorphism predicts peripartum depressive symptoms in an at-risk psychiatric cohort". J Psychiatr Res. 44 (10): 640–6. doi:10.1016/j.jpsychires.2009.12.001. PMC 2891911. PMID 20045118.
  4. Doornbos B, Dijck-Brouwer DA, Kema IP, Tanke MA, van Goor SA, Muskiet FA, Korf J (October 2009). "The development of peripartum depressive symptoms is associated with gene polymorphisms of MAOA, 5-HTT and COMT". Prog Neuropsychopharmacol Biol Psychiatry. 33 (7): 1250–4. doi:10.1016/j.pnpbp.2009.07.013. PMID 19625011.
  5. Alvim-Soares A, Miranda D, Campos SB, Figueira P, Romano-Silva MA, Correa H (August 2013). "Postpartum depression symptoms associated with Val158Met COMT polymorphism". Arch Womens Ment Health. 16 (4): 339–40. doi:10.1007/s00737-013-0349-8. PMID 23636476.
  6. Bouma EM, Riese H, Doornbos B, Ormel J, Oldehinkel AJ (February 2012). "Genetically based reduced MAOA and COMT functioning is associated with the cortisol stress response: a replication study". Mol Psychiatry. 17 (2): 119–21. doi:10.1038/mp.2011.115. PMID 21912392.
  7. Guintivano J, Arad M, Gould TD, Payne JL, Kaminsky ZA (May 2014). "Antenatal prediction of postpartum depression with blood DNA methylation biomarkers". Mol Psychiatry. 19 (5): 560–7. doi:10.1038/mp.2013.62. PMC 7039252 Check |pmc= value (help). PMID 23689534.
  8. Skrundz M, Bolten M, Nast I, Hellhammer DH, Meinlschmidt G (August 2011). "Plasma oxytocin concentration during pregnancy is associated with development of postpartum depression". Neuropsychopharmacology. 36 (9): 1886–93. doi:10.1038/npp.2011.74. PMC 3154107. PMID 21562482.
  9. Davies W (June 2017). "Understanding the pathophysiology of [[postpartum]] [[psychosis]]: Challenges and new approaches". World J Psychiatry. 7 (2): 77–88. doi:10.5498/wjp.v7.i2.77. PMC 5491479. PMID 28713685. URL–wikilink conflict (help)