Long COVID: Difference between revisions

Jump to navigation Jump to search
Line 61: Line 61:
*****[[Channelopathies]]
*****[[Channelopathies]]
*****Inadequate [[cerebral perfusion]]  
*****Inadequate [[cerebral perfusion]]  
***'''''[[Cardiovascular symptoms]]'''''
***'''''[[Cardiovascular]] [[symptoms]]'''''
****[[Cardiac injury]] occurs in a substantial proportion of patients during acute [[COVID-19]] episodes. Resulting cardiac abnormalities (such as impaired contractile function and [[cardiac remodeling]]) and [[myocardial inflammation]] may account for [[symptoms]] such as [[chest pain]], [[palpitations]], and [[tachycardia]].
****[[Cardiac injury]] occurs in a substantial proportion of patients during acute [[COVID-19]] episodes. Resulting [[cardiac abnormalities]] (such as impaired [[contractile function]] and [[cardiac remodeling]]) and [[myocardial inflammation]] may account for [[symptoms]] such as [[chest pain]], [[palpitations]], and [[tachycardia]].
****Cardiovascular and respiratory symptoms might also be due to damages of the intrathoracic chemo and mecano-receptors, which are involved in the control and regulation of respiration and heart rate. The SARS-CoV2 neurotropism (cell invasion and damage), microcirculation or autoimmune disorders have been suggested as the possible mechanisms for such damages. This hypothesis seems to explain many dysautonomic symptoms which occur due to a dysregulated rate in respiration or heart rate. These symptoms include breathlessness, exercise intolerance, palpitations, or orthostatic malaise. <ref name="pmid33536937">{{cite journal| author=Motiejunaite J, Balagny P, Arnoult F, Mangin L, Bancal C, d'Ortho MP | display-authors=etal| title=Hyperventilation: A Possible Explanation for Long-Lasting Exercise Intolerance in Mild COVID-19 Survivors? | journal=Front Physiol | year= 2020 | volume= 11 | issue=  | pages= 614590 | pmid=33536937 | doi=10.3389/fphys.2020.614590 | pmc=7849606 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33536937  }} </ref> <ref name="pmid33243837">{{cite journal| author=Dani M, Dirksen A, Taraborrelli P, Torocastro M, Panagopoulos D, Sutton R | display-authors=etal| title=Autonomic dysfunction in 'long COVID': rationale, physiology and management strategies. | journal=Clin Med (Lond) | year= 2021 | volume= 21 | issue= 1 | pages= e63-e67 | pmid=33243837 | doi=10.7861/clinmed.2020-0896 | pmc=7850225 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33243837  }} </ref> <ref name="pmid33538586">{{cite journal| author=Yong SJ| title=Persistent Brainstem Dysfunction in Long-COVID: A Hypothesis. | journal=ACS Chem Neurosci | year= 2021 | volume= 12 | issue= 4 | pages= 573-580 | pmid=33538586 | doi=10.1021/acschemneuro.0c00793 | pmc=7874499 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33538586  }} </ref>  
****Cardiovascular and respiratory symptoms might also be due to damages of the intrathoracic chemo and mecano-receptors, which are involved in the control and regulation of respiration and heart rate. The SARS-CoV2 neurotropism (cell invasion and damage), microcirculation or autoimmune disorders have been suggested as the possible mechanisms for such damages. This hypothesis seems to explain many dysautonomic symptoms which occur due to a dysregulated rate in respiration or heart rate. These symptoms include breathlessness, exercise intolerance, palpitations, or orthostatic malaise. <ref name="pmid33536937">{{cite journal| author=Motiejunaite J, Balagny P, Arnoult F, Mangin L, Bancal C, d'Ortho MP | display-authors=etal| title=Hyperventilation: A Possible Explanation for Long-Lasting Exercise Intolerance in Mild COVID-19 Survivors? | journal=Front Physiol | year= 2020 | volume= 11 | issue=  | pages= 614590 | pmid=33536937 | doi=10.3389/fphys.2020.614590 | pmc=7849606 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33536937  }} </ref> <ref name="pmid33243837">{{cite journal| author=Dani M, Dirksen A, Taraborrelli P, Torocastro M, Panagopoulos D, Sutton R | display-authors=etal| title=Autonomic dysfunction in 'long COVID': rationale, physiology and management strategies. | journal=Clin Med (Lond) | year= 2021 | volume= 21 | issue= 1 | pages= e63-e67 | pmid=33243837 | doi=10.7861/clinmed.2020-0896 | pmc=7850225 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33243837  }} </ref> <ref name="pmid33538586">{{cite journal| author=Yong SJ| title=Persistent Brainstem Dysfunction in Long-COVID: A Hypothesis. | journal=ACS Chem Neurosci | year= 2021 | volume= 12 | issue= 4 | pages= 573-580 | pmid=33538586 | doi=10.1021/acschemneuro.0c00793 | pmc=7874499 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33538586  }} </ref>  


*'''2) Ongoing [[inflammation]]'''
*'''2) Ongoing [[inflammation]]'''
**Several studies have suggested the presence of an unresolved [[inflammation]] in patients recovering from [[COVID-19]]. This ongoing [[inflammation]] may result from a variety of reasons.
**Several studies have suggested the presence of an unresolved [[inflammation]] in patients recovering from [[COVID-19]]. This ongoing [[inflammation]] may result from a variety of reasons.
*** '''''1) Viral persistence in the [[gastrointestinal tract]]:''''' Studies have shown the persistence of the virus in the gastrointestinal tract (in the gastric and intestinal cells) after recovering from acute [[COVID-19]] episodes due to the high expression of [[ACE2 receptors]] in these cells.  Increased fecal shedding of the [[SARS-CoV-2 virus]] has been shown in some studies. <ref name="pmid32404436">{{cite journal| author=Zang R, Gomez Castro MF, McCune BT, Zeng Q, Rothlauf PW, Sonnek NM | display-authors=etal| title=TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. | journal=Sci Immunol | year= 2020 | volume= 5 | issue= 47 | pages=  | pmid=32404436 | doi=10.1126/sciimmunol.abc3582 | pmc=7285829 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32404436  }} </ref> <ref name="pmid32142773">{{cite journal| author=Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H| title=Evidence for Gastrointestinal Infection of SARS-CoV-2. | journal=Gastroenterology | year= 2020 | volume= 158 | issue= 6 | pages= 1831-1833.e3 | pmid=32142773 | doi=10.1053/j.gastro.2020.02.055 | pmc=7130181 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32142773  }} </ref> <ref name="pmid33461210">{{cite journal| author=Gaebler C, Wang Z, Lorenzi JCC, Muecksch F, Finkin S, Tokuyama M | display-authors=etal| title=Evolution of antibody immunity to SARS-CoV-2. | journal=Nature | year= 2021 | volume= 591 | issue= 7851 | pages= 639-644 | pmid=33461210 | doi=10.1038/s41586-021-03207-w | pmc=8221082 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33461210  }} </ref> <ref name="pmid32358202">{{cite journal| author=Lamers MM, Beumer J, van der Vaart J, Knoops K, Puschhof J, Breugem TI | display-authors=etal| title=SARS-CoV-2 productively infects human gut enterocytes. | journal=Science | year= 2020 | volume= 369 | issue= 6499 | pages= 50-54 | pmid=32358202 | doi=10.1126/science.abc1669 | pmc=7199907 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32358202  }} </ref> This may trigger a state of immune activation and ongoing inflammation in the body and also may explain the relatively high [[prevalence]] (up to 30%) of [[gastrointestinal manifestations]] (e.g. [[appetite loss]], [[nausea]], [[vomiting]], [[diarrhea]], and [[abdominal discomfort]]) in patients with [[long COVID]]. <ref name="pmid32251668">{{cite journal| author=Cheung KS, Hung IFN, Chan PPY, Lung KC, Tso E, Liu R | display-authors=etal| title=Gastrointestinal Manifestations of SARS-CoV-2 Infection and Virus Load in Fecal Samples From a Hong Kong Cohort: Systematic Review and Meta-analysis. | journal=Gastroenterology | year= 2020 | volume= 159 | issue= 1 | pages= 81-95 | pmid=32251668 | doi=10.1053/j.gastro.2020.03.065 | pmc=7194936 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32251668  }} </ref> <ref name="pmid32405603">{{cite journal| author=Mao R, Qiu Y, He JS, Tan JY, Li XH, Liang J | display-authors=etal| title=Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis. | journal=Lancet Gastroenterol Hepatol | year= 2020 | volume= 5 | issue= 7 | pages= 667-678 | pmid=32405603 | doi=10.1016/S2468-1253(20)30126-6 | pmc=7217643 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32405603  }} </ref>
*** '''''1) Viral persistence in the [[gastrointestinal tract]]:''''' Studies have shown the persistence of the [[virus]] in the [[gastrointestinal tract]] (in the [[gastric]] and [[intestinal]] cells) after recovering from acute [[COVID-19]] episodes due to the high expression of [[ACE2 receptors]] in these cells.  Increased [[fecal shedding]] of the [[SARS-CoV-2 virus]] has been shown in some studies. <ref name="pmid32404436">{{cite journal| author=Zang R, Gomez Castro MF, McCune BT, Zeng Q, Rothlauf PW, Sonnek NM | display-authors=etal| title=TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. | journal=Sci Immunol | year= 2020 | volume= 5 | issue= 47 | pages=  | pmid=32404436 | doi=10.1126/sciimmunol.abc3582 | pmc=7285829 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32404436  }} </ref> <ref name="pmid32142773">{{cite journal| author=Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H| title=Evidence for Gastrointestinal Infection of SARS-CoV-2. | journal=Gastroenterology | year= 2020 | volume= 158 | issue= 6 | pages= 1831-1833.e3 | pmid=32142773 | doi=10.1053/j.gastro.2020.02.055 | pmc=7130181 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32142773  }} </ref> <ref name="pmid33461210">{{cite journal| author=Gaebler C, Wang Z, Lorenzi JCC, Muecksch F, Finkin S, Tokuyama M | display-authors=etal| title=Evolution of antibody immunity to SARS-CoV-2. | journal=Nature | year= 2021 | volume= 591 | issue= 7851 | pages= 639-644 | pmid=33461210 | doi=10.1038/s41586-021-03207-w | pmc=8221082 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33461210  }} </ref> <ref name="pmid32358202">{{cite journal| author=Lamers MM, Beumer J, van der Vaart J, Knoops K, Puschhof J, Breugem TI | display-authors=etal| title=SARS-CoV-2 productively infects human gut enterocytes. | journal=Science | year= 2020 | volume= 369 | issue= 6499 | pages= 50-54 | pmid=32358202 | doi=10.1126/science.abc1669 | pmc=7199907 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32358202  }} </ref> This may trigger a state of immune activation and ongoing [[inflammation]] in the body and also may explain the relatively high [[prevalence]] (up to 30%) of [[gastrointestinal manifestations]] (e.g. [[appetite loss]], [[nausea]], [[vomiting]], [[diarrhea]], and [[abdominal discomfort]]) in patients with [[long COVID]]. <ref name="pmid32251668">{{cite journal| author=Cheung KS, Hung IFN, Chan PPY, Lung KC, Tso E, Liu R | display-authors=etal| title=Gastrointestinal Manifestations of SARS-CoV-2 Infection and Virus Load in Fecal Samples From a Hong Kong Cohort: Systematic Review and Meta-analysis. | journal=Gastroenterology | year= 2020 | volume= 159 | issue= 1 | pages= 81-95 | pmid=32251668 | doi=10.1053/j.gastro.2020.03.065 | pmc=7194936 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32251668  }} </ref> <ref name="pmid32405603">{{cite journal| author=Mao R, Qiu Y, He JS, Tan JY, Li XH, Liang J | display-authors=etal| title=Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis. | journal=Lancet Gastroenterol Hepatol | year= 2020 | volume= 5 | issue= 7 | pages= 667-678 | pmid=32405603 | doi=10.1016/S2468-1253(20)30126-6 | pmc=7217643 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32405603  }} </ref>
*** '''''2) [[Lymphopenia]]:''''' Increased levels of [[pro-inflammatory markers]] (e.g. [[CRP]], [[IL-6]], and [[D-dimer]]) and [[lymphopenia]] occur during acute [[COVID-19]] episodes and have been shown to be associated with [[long COVID]] [[symptoms]], particularly [[myalgia]], [[fatigue]], and [[joint pain]]. <ref name="pmid32569607">{{cite journal| author=Tavakolpour S, Rakhshandehroo T, Wei EX, Rashidian M| title=Lymphopenia during the COVID-19 infection: What it shows and what can be learned. | journal=Immunol Lett | year= 2020 | volume= 225 | issue=  | pages= 31-32 | pmid=32569607 | doi=10.1016/j.imlet.2020.06.013 | pmc=7305732 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32569607  }} </ref>  
*** '''''2) [[Lymphopenia]]:''''' Increased levels of [[pro-inflammatory markers]] (e.g. [[CRP]], [[IL-6]], and [[D-dimer]]) and [[lymphopenia]] occur during acute [[COVID-19]] episodes and have been shown to be associated with [[long COVID]] [[symptoms]], particularly [[myalgia]], [[fatigue]], and [[joint pain]]. <ref name="pmid32569607">{{cite journal| author=Tavakolpour S, Rakhshandehroo T, Wei EX, Rashidian M| title=Lymphopenia during the COVID-19 infection: What it shows and what can be learned. | journal=Immunol Lett | year= 2020 | volume= 225 | issue=  | pages= 31-32 | pmid=32569607 | doi=10.1016/j.imlet.2020.06.013 | pmc=7305732 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32569607  }} </ref>  
*** '''''3) [[Autoimmunity]]:''''' Recently, [[T-cells]] and [[B-cells]] dysfunction have been suggested to promote [[long COVID]] [[pathophysiology]] similar to [[autoimmune diseases[[. <ref name="pmid33208380">{{cite journal| author=Karlsson AC, Humbert M, Buggert M| title=The known unknowns of T cell immunity to COVID-19. | journal=Sci Immunol | year= 2020 | volume= 5 | issue= 53 | pages=  | pmid=33208380 | doi=10.1126/sciimmunol.abe8063 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33208380  }} </ref>
*** '''''3) [[Autoimmunity]]:''''' Recently, [[T-cells]] and [[B-cells]] dysfunction have been suggested to promote [[long COVID]] [[pathophysiology]] similar to [[autoimmune diseases[[. <ref name="pmid33208380">{{cite journal| author=Karlsson AC, Humbert M, Buggert M| title=The known unknowns of T cell immunity to COVID-19. | journal=Sci Immunol | year= 2020 | volume= 5 | issue= 53 | pages=  | pmid=33208380 | doi=10.1126/sciimmunol.abe8063 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=33208380  }} </ref>

Revision as of 18:55, 17 March 2022

WikiDoc Resources for Long COVID

Articles

Most recent articles on Long COVID

Most cited articles on Long COVID

Review articles on Long COVID

Articles on Long COVID in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Long COVID

Images of Long COVID

Photos of Long COVID

Podcasts & MP3s on Long COVID

Videos on Long COVID

Evidence Based Medicine

Cochrane Collaboration on Long COVID

Bandolier on Long COVID

TRIP on Long COVID

Clinical Trials

Ongoing Trials on Long COVID at Clinical Trials.gov

Trial results on Long COVID

Clinical Trials on Long COVID at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Long COVID

NICE Guidance on Long COVID

NHS PRODIGY Guidance

FDA on Long COVID

CDC on Long COVID

Books

Books on Long COVID

News

Long COVID in the news

Be alerted to news on Long COVID

News trends on Long COVID

Commentary

Blogs on Long COVID

Definitions

Definitions of Long COVID

Patient Resources / Community

Patient resources on Long COVID

Discussion groups on Long COVID

Patient Handouts on Long COVID

Directions to Hospitals Treating Long COVID

Risk calculators and risk factors for Long COVID

Healthcare Provider Resources

Symptoms of Long COVID

Causes & Risk Factors for Long COVID

Diagnostic studies for Long COVID

Treatment of Long COVID

Continuing Medical Education (CME)

CME Programs on Long COVID

International

Long COVID en Espanol

Long COVID en Francais

Business

Long COVID in the Marketplace

Patents on Long COVID

Experimental / Informatics

List of terms related to Long COVID

For COVID-19 main page, click here

For COVID-19 frequently asked inpatient questions, click here

For COVID-19 frequently asked outpatient questions, click here

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Mitra Chitsazan, M.D.[2]

Synonyms and keywords: Long COVID Syndrome, long COVID, long-haul COVID, post-COVID-19 condition, post-COVID-19 syndrome, post-acute sequelae of COVID-19 (PASC), chronic COVID syndrome (CCS), Long-hauler COVID-19, Long-COVID, Long-tail COVID, Long-haulers, Post-acute COVID-19 syndrome, Acute post-COVID symptoms, Long post-COVID symptoms Persistent post-COVID symptoms, Post-acute COVID-19, On-going symptomatic COVID-19, Chronic COVID-19


Overview

  • Shortly after the COVID-19 pandemic onset, emerging studies showed that a considerable proportion of patients with COVID-19 might exhibit sustained postinfection sequelae.

Historical Perspective

Definition

  • On October 6, 2021, World Health Organization (WHO) released a clinical case definition of the post-COVID-19 condition through a robust, protocol-based methodology (Delphi consensus), which engaged a diverse group of representative patients, patient-researchers, external experts, WHO staff, and other stakeholders from multiple geographies. It was acknowledged that this definition may change with emerging new evidence and continuously evolving our understanding of the consequences of COVID-19.
  • According to WHO clinical case definition, the post-COVID-19 condition is defined as:

Classification

There is no established system for the classification of long COVID.

Pathophysiology

The exact pathogenesis of long COVID is not fully understood. However, a number of putative pathophysiologic mechanisms have been suggested.

Epidemiology and Demographics

  • The reported incidence/prevalence of long COVID-19 varies in different studies mainly due to the absence of single terminology and definition.
  • One study found that up to 70% of individuals at low risk of mortality from COVID-19 experience impairment in one or more organs (including heart, lungs, kidneys, liver, pancreas, or spleen) 4 months after acute COVID-19 episode.
  • A meta-analysis, including 47,910 patients (age 17-87 years), estimated that 80% of the patients with SARS-CoV-2 infections developed one or more long-term (ranging from 14 to 110 days) symptoms.
  • Women seem to be more commonly affected by long COVID than men.

Risk Factors

Screening

There is insufficient evidence to recommend routine screening for long COVID.

Natural History, Complications, and Prognosis

  • The natural history, clinical course, long-term complications, and prognosis of long COVID-19 are still not completely understood.
  • Manifestations of the post-COVID-19 condition vary considerably in terms of organ involvement and severity of symptoms; however, they generally impact the everyday functioning of affected patients.
  • Symptoms might newly develop following initial recovery from an acute COVID-19 illness or occur as a persist from the initial episode.
  • Symptoms might also fluctuate or relapse over time.

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Long COVID can involve almost every organ. The most common symptoms of long COVID include:

Physical Examination

Laboratory Findings

There are no diagnostic laboratory findings associated with long COVID. Symptoms do not correlate with the serology of SARS-CoV-2.

Electrocardiography

In patients with cardiopulmonary symptoms, an ECG may be needed.

X-ray

A chest x-ray may be helpful in the diagnosis of pulmonary complications of COVID such as lung damage (ie, ground glass opacities, consolidation, interlobular septal thickening), pleural effusion.

Echocardiography or Ultrasound

In selected patients with cardiopulmonary symptoms, echocardiography may be necessary.

CT scan

In patients with cardiopulmonary symptoms, a chest CT scan may be needed.

MRI

There are no MRI findings associated with long COVID. However, a cardiac MRI may be helpful in the diagnosis of myocarditis in COVID-19 patients.

Other Imaging Findings

There are no other imaging findings associated with long COVID.

Other Diagnostic Studies

In selected patients with cardiopulmonary symptoms, Holter monitoring, cardiopulmonary exercise testing (CPET), and pulmonary function tests may be necessary.

Treatment

Due to the diversity of symptoms and their severity, the mainstay of long COVID treatment is multidisciplinary and supportive. The management should focus on supporting self-management and individualized rehabilitation.

Medical Therapy

  • Olfactory/gustatory symptoms
    • In most patients with a loss or decrease in sense of smell or taste, symptoms improve slowly over several weeks and do not require medical intervention. Patients may need education on food and home safety.
    • In patients with persistent symptoms, olfactory training may be appropriate. If conservative management fails, referral to an otolaryngologist and specialized taste and smell clinic may also be considered.
  • Alopecia
    • There is no specific therapy for alopecia in COVID-19 patients, and it should be managed similarly to non-COVID-19 patients.
    • In patients with concomitant malnutrition, nutritional deficiencies should be corrected.

Primary Prevention

The most effective measure to prevent the post-COVID-19 condition is to prevent COVID-19. These primary prevention strategies include:

Secondary Prevention

There are no established measures for the secondary prevention of long COVID.

See also

References

  1. Truffaut L, Demey L, Bruyneel AV, Roman A, Alard S, De Vos N; et al. (2021). "Post-discharge critical COVID-19 lung function related to severity of radiologic lung involvement at admission". Respir Res. 22 (1): 29. doi:10.1186/s12931-021-01625-y. PMC 7819622 Check |pmc= value (help). PMID 33478527 PMID: 33478527 Check |pmid= value (help).
  2. Han X, Fan Y, Alwalid O, Li N, Jia X, Yuan M; et al. (2021). "Six-month Follow-up Chest CT Findings after Severe COVID-19 Pneumonia". Radiology. 299 (1): E177–E186. doi:10.1148/radiol.2021203153. PMC 7841877 Check |pmc= value (help). PMID 33497317 PMID: 33497317 Check |pmid= value (help).
  3. Bellan M, Soddu D, Balbo PE, Baricich A, Zeppegno P, Avanzi GC; et al. (2021). "Respiratory and Psychophysical Sequelae Among Patients With COVID-19 Four Months After Hospital Discharge". JAMA Netw Open. 4 (1): e2036142. doi:10.1001/jamanetworkopen.2020.36142. PMC 7841464 Check |pmc= value (help). PMID 33502487 PMID: 33502487 Check |pmid= value (help).
  4. Liu D, Zhang W, Pan F, Li L, Yang L, Zheng D; et al. (2020). "The pulmonary sequalae in discharged patients with COVID-19: a short-term observational study". Respir Res. 21 (1): 125. doi:10.1186/s12931-020-01385-1. PMC 7245637 Check |pmc= value (help). PMID 32448391 PMID: 32448391 Check |pmid= value (help).
  5. Marvisi M, Ferrozzi F, Balzarini L, Mancini C, Ramponi S, Uccelli M (2020). "First report on clinical and radiological features of COVID-19 pneumonitis in a Caucasian population: Factors predicting fibrotic evolution". Int J Infect Dis. 99: 485–488. doi:10.1016/j.ijid.2020.08.054. PMC 7443096 Check |pmc= value (help). PMID 32841688 PMID: 32841688 Check |pmid= value (help).
  6. Wei J, Yang H, Lei P, Fan B, Qiu Y, Zeng B; et al. (2020). "Analysis of thin-section CT in patients with coronavirus disease (COVID-19) after hospital discharge". J Xray Sci Technol. 28 (3): 383–389. doi:10.3233/XST-200685. PMC 7369060 Check |pmc= value (help). PMID 32474479 PMID: 32474479 Check |pmid= value (help).
  7. 7.0 7.1 Maksoud R, du Preez S, Eaton-Fitch N, Thapaliya K, Barnden L, Cabanas H | display-authors=etal (2020) A systematic review of neurological impairments in myalgic encephalomyelitis/ chronic fatigue syndrome using neuroimaging techniques. PLoS One 15 (4):e0232475. DOI:10.1371/journal.pone.0232475 PMID: 32353033
  8. Rubin R (2020). "As Their Numbers Grow, COVID-19 "Long Haulers" Stump Experts". JAMA. 324 (14): 1381–1383. doi:10.1001/jama.2020.17709. PMID 32965460 Check |pmid= value (help).
  9. 9.0 9.1 Dani M, Dirksen A, Taraborrelli P, Torocastro M, Panagopoulos D, Sutton R; et al. (2021). "Autonomic dysfunction in 'long COVID': rationale, physiology and management strategies". Clin Med (Lond). 21 (1): e63–e67. doi:10.7861/clinmed.2020-0896. PMC 7850225 Check |pmc= value (help). PMID 33243837 Check |pmid= value (help).
  10. Komaroff AL, Bateman L (2020). "Will COVID-19 Lead to Myalgic Encephalomyelitis/Chronic Fatigue Syndrome?". Front Med (Lausanne). 7: 606824. doi:10.3389/fmed.2020.606824. PMC 7848220 Check |pmc= value (help). PMID 33537329 Check |pmid= value (help).
  11. Motiejunaite J, Balagny P, Arnoult F, Mangin L, Bancal C, d'Ortho MP; et al. (2020). "Hyperventilation: A Possible Explanation for Long-Lasting Exercise Intolerance in Mild COVID-19 Survivors?". Front Physiol. 11: 614590. doi:10.3389/fphys.2020.614590. PMC 7849606 Check |pmc= value (help). PMID 33536937 Check |pmid= value (help).
  12. Yong SJ (2021). "Persistent Brainstem Dysfunction in Long-COVID: A Hypothesis". ACS Chem Neurosci. 12 (4): 573–580. doi:10.1021/acschemneuro.0c00793. PMC 7874499 Check |pmc= value (help). PMID 33538586 Check |pmid= value (help).
  13. Zang R, Gomez Castro MF, McCune BT, Zeng Q, Rothlauf PW, Sonnek NM; et al. (2020). "TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes". Sci Immunol. 5 (47). doi:10.1126/sciimmunol.abc3582. PMC 7285829 Check |pmc= value (help). PMID 32404436 Check |pmid= value (help).
  14. Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H (2020). "Evidence for Gastrointestinal Infection of SARS-CoV-2". Gastroenterology. 158 (6): 1831–1833.e3. doi:10.1053/j.gastro.2020.02.055. PMC 7130181 Check |pmc= value (help). PMID 32142773 Check |pmid= value (help).
  15. Gaebler C, Wang Z, Lorenzi JCC, Muecksch F, Finkin S, Tokuyama M; et al. (2021). "Evolution of antibody immunity to SARS-CoV-2". Nature. 591 (7851): 639–644. doi:10.1038/s41586-021-03207-w. PMC 8221082 Check |pmc= value (help). PMID 33461210 Check |pmid= value (help).
  16. Lamers MM, Beumer J, van der Vaart J, Knoops K, Puschhof J, Breugem TI; et al. (2020). "SARS-CoV-2 productively infects human gut enterocytes". Science. 369 (6499): 50–54. doi:10.1126/science.abc1669. PMC 7199907 Check |pmc= value (help). PMID 32358202 Check |pmid= value (help).
  17. Cheung KS, Hung IFN, Chan PPY, Lung KC, Tso E, Liu R; et al. (2020). "Gastrointestinal Manifestations of SARS-CoV-2 Infection and Virus Load in Fecal Samples From a Hong Kong Cohort: Systematic Review and Meta-analysis". Gastroenterology. 159 (1): 81–95. doi:10.1053/j.gastro.2020.03.065. PMC 7194936 Check |pmc= value (help). PMID 32251668 Check |pmid= value (help).
  18. Mao R, Qiu Y, He JS, Tan JY, Li XH, Liang J; et al. (2020). "Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis". Lancet Gastroenterol Hepatol. 5 (7): 667–678. doi:10.1016/S2468-1253(20)30126-6. PMC 7217643 Check |pmc= value (help). PMID 32405603 Check |pmid= value (help).
  19. Tavakolpour S, Rakhshandehroo T, Wei EX, Rashidian M (2020). "Lymphopenia during the COVID-19 infection: What it shows and what can be learned". Immunol Lett. 225: 31–32. doi:10.1016/j.imlet.2020.06.013. PMC 7305732 Check |pmc= value (help). PMID 32569607 Check |pmid= value (help).
  20. Karlsson AC, Humbert M, Buggert M (2020). "The known unknowns of T cell immunity to COVID-19". Sci Immunol. 5 (53). doi:10.1126/sciimmunol.abe8063. PMID 33208380 Check |pmid= value (help).
  21. Singh I, Joseph P, Heerdt PM, Cullinan M, Lutchmansingh DD, Gulati M; et al. (2022). "Persistent Exertional Intolerance After COVID-19: Insights From Invasive Cardiopulmonary Exercise Testing". Chest. 161 (1): 54–63. doi:10.1016/j.chest.2021.08.010. PMC 8354807 Check |pmc= value (help). PMID 34389297 Check |pmid= value (help).