Adult brain tumors: Difference between revisions

Jump to navigation Jump to search
Line 52: Line 52:
:* '''Myxopapillary ependymoma''': Myxopapillary ependymoma (WHO grade I) is a slow-growing astrocytic tumor, histologically characterized by tumor cells arranged in a papillary pattern around vascularized mucoid stromal cores.[22] In a large series of cases of ependymal tumors, 13% were found to be of the myxopapillary type. The average age at presentation is approximately 36 years. This tumor almost exclusively occurs in the conus-cauda-filum terminate region of the spinal cord. No specific cytogenetics or molecular genetics exist with this tumor. The prognosis for patients with myxopapillary ependymoma is good with the possibility of more than 10 years of survival after total or partial resection.
:* '''Myxopapillary ependymoma''': Myxopapillary ependymoma (WHO grade I) is a slow-growing astrocytic tumor, histologically characterized by tumor cells arranged in a papillary pattern around vascularized mucoid stromal cores.[22] In a large series of cases of ependymal tumors, 13% were found to be of the myxopapillary type. The average age at presentation is approximately 36 years. This tumor almost exclusively occurs in the conus-cauda-filum terminate region of the spinal cord. No specific cytogenetics or molecular genetics exist with this tumor. The prognosis for patients with myxopapillary ependymoma is good with the possibility of more than 10 years of survival after total or partial resection.
:* '''Subependymoma''': Subependymoma (WHO grade I) is a slow-growing glial neoplasm that is typically attached to the ventricular wall.[23] In a large series of cases, this histologic type accounted for 8.3% of ependymal tumors. This tumor occurs most frequently in middle-aged and elderly males. Consistent cytogenetic abnormalities have not been found. Subependymoma carries a good prognosis; surgical removal is usually curative.
:* '''Subependymoma''': Subependymoma (WHO grade I) is a slow-growing glial neoplasm that is typically attached to the ventricular wall.[23] In a large series of cases, this histologic type accounted for 8.3% of ependymal tumors. This tumor occurs most frequently in middle-aged and elderly males. Consistent cytogenetic abnormalities have not been found. Subependymoma carries a good prognosis; surgical removal is usually curative.
:* '''Ependymoma''' (including cellular, papillary, clear cell, and tanycytic).
:* '''Ependymoma''' (including cellular, papillary, clear cell, and tanycytic): Ependymoma (WHO grade II) is a slow-growing tumor of children and young adults that originates from the wall of the cerebral ventricles or from the spinal canal and is composed of neoplastic ependymal cells.[11] These types of tumors account for 3% to 5% of all neuroepithelial tumors and for 30% of those in children younger than 3 years. Ependymomas are the most common neuroepithelial neoplasms in the spinal cord and comprise 50% to 60% of spinal gliomas. These tumors occur at any site in the ventricular system and in the spinal canal; they develop most commonly in the posterior fossa and in the spinal cord, followed by the lateral ventricles and the third ventricle. Histologic variants include cellular ependymoma, papillary ependymoma, clear cell ependymoma, and tanycytic ependymoma. Almost 33% of ependymomas involve aberrations of chromosome 22. These types of tumors contain no specific genetic alterations. Spinal ependymomas are a primary manifestation of neurofibromatosis type 2 (NF2), which indicates a possible role for the NF2 gene in these neoplasms. In a series of adult patients with ependymoma, survival rates at 5 and 10 years were approximately 57% and 45%, respectively.
:* '''Anaplastic ependymoma'''.
:* '''Anaplastic ependymoma'''.
* '''Neuroepithelial tumors of uncertain origin'''.
* '''Neuroepithelial tumors of uncertain origin'''.

Revision as of 21:16, 11 January 2009

Adult brain tumors

WikiDoc Resources for Adult brain tumors

Articles

Most recent articles on Adult brain tumors

Most cited articles on Adult brain tumors

Review articles on Adult brain tumors

Articles on Adult brain tumors in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Adult brain tumors

Images of Adult brain tumors

Photos of Adult brain tumors

Podcasts & MP3s on Adult brain tumors

Videos on Adult brain tumors

Evidence Based Medicine

Cochrane Collaboration on Adult brain tumors

Bandolier on Adult brain tumors

TRIP on Adult brain tumors

Clinical Trials

Ongoing Trials on Adult brain tumors at Clinical Trials.gov

Trial results on Adult brain tumors

Clinical Trials on Adult brain tumors at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Adult brain tumors

NICE Guidance on Adult brain tumors

NHS PRODIGY Guidance

FDA on Adult brain tumors

CDC on Adult brain tumors

Books

Books on Adult brain tumors

News

Adult brain tumors in the news

Be alerted to news on Adult brain tumors

News trends on Adult brain tumors

Commentary

Blogs on Adult brain tumors

Definitions

Definitions of Adult brain tumors

Patient Resources / Community

Patient resources on Adult brain tumors

Discussion groups on Adult brain tumors

Patient Handouts on Adult brain tumors

Directions to Hospitals Treating Adult brain tumors

Risk calculators and risk factors for Adult brain tumors

Healthcare Provider Resources

Symptoms of Adult brain tumors

Causes & Risk Factors for Adult brain tumors

Diagnostic studies for Adult brain tumors

Treatment of Adult brain tumors

Continuing Medical Education (CME)

CME Programs on Adult brain tumors

International

Adult brain tumors en Espanol

Adult brain tumors en Francais

Business

Adult brain tumors in the Marketplace

Patents on Adult brain tumors

Experimental / Informatics

List of terms related to Adult brain tumors

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Associate Editor in Chief: Cafer Zorkun, M.D., Ph.D. [2]

Please Take Over This Page and Apply to be Editor-In-Chief for this topic: There can be one or more than one Editor-In-Chief. You may also apply to be an Associate Editor-In-Chief of one of the subtopics below. Please mail us [3] to indicate your interest in serving either as an Editor-In-Chief of the entire topic or as an Associate Editor-In-Chief for a subtopic. Please be sure to attach your CV and or biographical sketch.

Classification & Grading

The WHO grading of CNS tumors establishes a malignancy scale based on histologic features of the tumor. The histologic grades are as follows:

  • WHO grade I includes lesions with low proliferative potential, a frequently discrete nature, and the possibility of cure following surgical resection alone.
  • WHO grade II includes lesions that are generally infiltrating and low in mitotic activity but recur. Some tumor types tend to progress to higher grades of malignancy.
  • WHO grade III includes lesions with histologic evidence of malignancy, generally in the form of mitotic activity, clearly expressed infiltrative capabilities, and anaplasia.
  • WHO grade IV includes lesions that are mitotically active, necrosis-prone, and generally associated with a rapid preoperative and postoperative evolution of disease.

Brain Tumors in Adult Population

Neuroepithelial tumors

Glial tumors

  • Astrocytic tumors: An increased risk of astrocytic tumors has been observed in patients who receive therapeutic radiation therapy for pituitary adenomas, craniopharyngioma, pineal parenchymal tumors, germinoma, and tinea capitis. In addition, children who receive prophylactic radiation therapy of the CNS for acute lymphoblastic leukemia have an increased risk of developing astrocytomas. Recurrent lesions often signal histologic progression to a higher grade; this malignant progression is associated with a cumulative acquisition of multiple genetic alterations.
  • Pilocytic astrocytoma: Pilocytic astrocytoma (WHO grade I) is a grossly circumscribed, slow-growing, often cystic tumor that occurs primarily in children and young adults.[5] Histologically, pilocytic astrocytomas are composed of varying proportions of compacted bipolar cells with Rosenthal fibers and loose-textured multipolar cells with microcysts and granular bodies. This tumor is the most common glioma in children and represents 10% of cerebral and 85% of cerebellar astrocytic tumors. Occurring throughout the neuraxis, the preferred sites include the optic nerve, optic chiasm/hypothalamus, thalamus and basal ganglia, cerebral hemispheres, cerebellum, and brain stem. Pilocytic astrocytoma is the principal CNS tumor associated with neurofibromatosis type 1 (NF1). No specific cytogenetics or molecular genetics exist with this tumor. This tumor is infrequently fatal.
  • Diffuse astrocytoma (including fibrillary, protoplasmic, and gemistocytic): Diffuse astrocytoma (WHO grade II), also known as low-grade diffuse astrocytoma, is characterized by slow growth and infiltration of neighboring brain structures.[6] Histologically, diffuse astrocytomas are composed of well-differentiated fibrillary or gemistocytic neoplastic astrocytes. This type of tumor typically affects young adults and has a tendency for malignant progression to anaplastic astrocytoma and, ultimately, glioblastoma. Diffuse astrocytomas represent 35% of all astrocytic brain tumors.[7] They may be located in any region of the CNS but most commonly develop in the cerebrum. Three histologic variants include: fibrillary astrocytoma, gemistocytic astrocytoma, and protoplasmic astrocytoma. These types of tumors may occur in patients with inherited TP53 germline mutations (Li-Fraumeni syndrome). TP53 (also known as p53) mutations have been reported in more than 60% of the cases. The most common chromosomal alteration seen in diffuse astrocytoma is the deletion of chromosome band 17p13.1.[7] The mean survival time after surgical intervention is in the range of 6 to 8 years, with considerable individual variation.
  • Anaplastic astrocytoma: Anaplastic astrocytoma (WHO grade III), also known as malignant astrocytoma and high-grade astrocytoma, may arise from a diffuse astrocytoma or may arise de novo without indication of a less malignant precursor.[8] Histologically, this tumor shows increased cellularity, distinct nuclear atypia, and marked mitotic activity when compared with a diffuse astrocytoma. Anaplastic astrocytomas possess an intrinsic tendency to progress to glioblastoma. The mean age at biopsy is approximately 41 years. This tumor primarily affects the cerebral hemispheres. It has a high frequency of TP53 mutations, which is similar to that of diffuse astrocytoma. Chromosomal abnormalities are nonspecific. Many of the genetic alterations seen in anaplastic astrocytomas involve genes that regulate cell cycle progression.[7] The mean time to progression is 2 years. Positive predictive factors include young age, high performance status, and gross total tumor resection.
  • Glioblastoma (including giant cell glioblastoma, and gliosarcoma): Glioblastoma (WHO grade IV), also known as glioblastoma multiforme, may develop from a diffuse astrocytoma or an anaplastic astrocytoma but more commonly presents de novo without evidence of a less malignant precursor.[9] Histologically, this tumor is an anaplastic, cellular glioma composed of poorly differentiated, often pleomorphic astrocytic tumor cells with marked nuclear atypia and brisk mitotic activity. Secondary glioblastoma is the term used to describe a glioblastoma developed from a diffuse astrocytoma or an anaplastic astrocytoma. Glioblastoma is the most frequent brain tumor and accounts for approximately 12% to 15% of all brain tumors and 50% to 60% of all astrocytic tumors. The peak incidence occurs between the ages of 45 and 70 years. Glioblastoma primarily affects the cerebral hemispheres. Two histologic variants include: giant cell glioblastoma and gliosarcoma. Glioblastoma has been associated with more specific genetic abnormalities than any other astrocytic neoplasm, but none are specific to it. Amplification of the epidermal growth factor receptor locus is found in approximately 40% of primary glioblastomas but is rarely found in secondary glioblastomas; mutations of the PTEN gene are observed in 45% of primary glioblastomas and are seen more frequently in primary glioblastomas than in secondary glioblastomas.[7] Loss of heterozygosity (LOH) of chromosome 10 and loss of an entire copy of chromosome 10 are the most frequently observed chromosomal alterations. Glioblastomas are seen in mismatch repair-associated Turcot syndrome type 1. Glioblastomas are among the most aggressively malignant human neoplasms, with a mean total length of disease in patients with primary glioblastoma of less than 1 year. Mutation of the PTEN gene is associated with a poor prognosis in a subset of patients with gliomas.
  • Pleomorphic xanthoastrocytoma: Pleomorphic xanthoastrocytoma (WHO grade II) is a rare astrocytic tumor composed of pleomorphic and lipidized cells expressing glial fibrillary acidic protein (GFAP).[10] This tumor accounts for fewer than 1% of all astrocytic neoplasms, typically develops in children and young adults, and commonly involves the cerebrum and meninges. This tumor has a relatively favorable prognosis; recurrence-free survival rates of 72% at 5 years and 61% at 10 years have been reported. No specific cytogenetics or molecular genetics exist with this tumor.
  • Subependymal giant cell astrocytoma: Subependymal giant cell astrocytoma (SEGA) (WHO grade I) is a benign, slow-growing tumor typically arising in the wall of the lateral ventricles and composed of large ganglioid astrocytes.[11] SEGA occurs almost exclusively in patients with tuberous sclerosis complex (TSC); its incidence ranges from approximately 6% to 16% of patients with TSC. SEGA typically occurs during the first 2 decades of life. Genetic linkage studies indicate two distinct TSC loci on chromosome 9q (TSC1) and on chromosome 16p (TSC2). Its relationship with astroglial tumors remains unclear.[1]
  • Oligodendroglial tumors: The most common genetic alteration in oligodendroglial tumors is LOH on the long arm of chromosome 19q, the incidence of which ranges from 50% to more than 80%.[12] The second most common genetic alteration in oligodendroglial tumors is LOH on the short arm of chromosome 1p. Specific chromosomal abnormalities involving deletions of both 1p and 19q have been identified for a subset of oligodendroglial tumors, which have a good response to lomustine, procarbazine, and vincristine (PCV) therapy.[13,14] Median postoperative survival times have been reported to range from 3 to 10 years for all histologic grades of oligodendroglial tumors.[15]
  • Oligodendroglioma: Oligodendroglioma (WHO grade II) is a well-differentiated tumor, composed predominantly of cells morphologically resembling oligodendroglia, which grows diffusely in the cortex and white matter.[12] This tumor accounts for approximately 50% of oligodendroglial tumors and between 5% and 18% of all gliomas.[7] Most oligodendrogliomas occur in adults, with a peak incidence in the fifth and sixth decades of life. Compared to patients with astrocytoma, patients with oligodendroglioma respond better to radiation therapy and chemotherapy.[15] Temozolomide appears to have activity in low-grade oligodendrogliomas and oligoastrocytomas combined with a 1p allelic loss. Clinical improvement was noted in 51% of patients, and the radiologic response rate was 31%.[16]
  • Anaplastic oligodendroglioma: Anaplastic oligodendroglioma (WHO grade III) is an oligodendroglial tumor with focal or diffuse histologic features of malignancy and a less favorable prognosis than grade II oligodendroglioma.[17] Approximately 50% of oligodendroglial tumors are anaplastic oligodendrogliomas.[7] These types of tumors manifest mainly in adults and occur primarily in the frontal lobe and secondarily in the temporal lobe. In a study of 39 patients, chemotherapy was effective in tumors with a chromosomal abnormality (i.e., an allelic loss at 1p and 19q, which is present in 65% of tumors) with a response rate to combination therapy with procarbazine, lomustine, and vincristine (PCV) approaching 100%. The 5-year survival rate in this group was 95%.[18,19]
  • Mixed gliomas.
  • Oligoastrocytoma: Oligoastrocytoma (WHO grade II) is composed of two distinct neoplastic cell types that morphologically resemble tumor cells in oligodendroglioma and diffuse astrocytoma.[20] Estimates of incidence vary greatly. In one large U.S. study, only 1.8% of gliomas were classified as mixed gliomas. The median age of patients is reported to range from 35 years to 45 years. This tumor has a predilection for the cerebral hemispheres; the frontal lobes are most commonly affected, followed by the temporal lobes. These types of tumors contain no specific genetic alterations or chromosomal abnormalities; however, about 30% of oligoastrocytomas have genetic aberrations commonly found in astrocytic tumors. One study reported a median survival time of 6.3 years. Temozolomide appears to have activity in low-grade oligoastrocytomas and oligodendrogliomas combined with a 1p allelic loss. Clinical improvement was noted in 51% of patients, and the radiologic response rate was 31%.[16
  • Anaplastic oligoastrocytoma: Anaplastic oligoastrocytoma (WHO grade III) is a more poorly differentiated tumor than oligoastrocytoma.[21] These types of tumors accounted for 4% of tumors in a large series of supratentorial anaplastic gliomas in adults. The mean age of patients has been reported to be 45 years. Anaplastic oligoastrocytomas are predominantly hemispheric tumors, and the frontal lobes are more commonly involved than the temporal lobes. These tumors share many genetic alterations that are also implicated in the progression of astrocytomas and oligodendrogliomas. The prognosis of patients with anaplastic oligoastrocytomas is relatively poor though considerably better than for patients with glioblastoma.
  • Ependymal tumors.
  • Myxopapillary ependymoma: Myxopapillary ependymoma (WHO grade I) is a slow-growing astrocytic tumor, histologically characterized by tumor cells arranged in a papillary pattern around vascularized mucoid stromal cores.[22] In a large series of cases of ependymal tumors, 13% were found to be of the myxopapillary type. The average age at presentation is approximately 36 years. This tumor almost exclusively occurs in the conus-cauda-filum terminate region of the spinal cord. No specific cytogenetics or molecular genetics exist with this tumor. The prognosis for patients with myxopapillary ependymoma is good with the possibility of more than 10 years of survival after total or partial resection.
  • Subependymoma: Subependymoma (WHO grade I) is a slow-growing glial neoplasm that is typically attached to the ventricular wall.[23] In a large series of cases, this histologic type accounted for 8.3% of ependymal tumors. This tumor occurs most frequently in middle-aged and elderly males. Consistent cytogenetic abnormalities have not been found. Subependymoma carries a good prognosis; surgical removal is usually curative.
  • Ependymoma (including cellular, papillary, clear cell, and tanycytic): Ependymoma (WHO grade II) is a slow-growing tumor of children and young adults that originates from the wall of the cerebral ventricles or from the spinal canal and is composed of neoplastic ependymal cells.[11] These types of tumors account for 3% to 5% of all neuroepithelial tumors and for 30% of those in children younger than 3 years. Ependymomas are the most common neuroepithelial neoplasms in the spinal cord and comprise 50% to 60% of spinal gliomas. These tumors occur at any site in the ventricular system and in the spinal canal; they develop most commonly in the posterior fossa and in the spinal cord, followed by the lateral ventricles and the third ventricle. Histologic variants include cellular ependymoma, papillary ependymoma, clear cell ependymoma, and tanycytic ependymoma. Almost 33% of ependymomas involve aberrations of chromosome 22. These types of tumors contain no specific genetic alterations. Spinal ependymomas are a primary manifestation of neurofibromatosis type 2 (NF2), which indicates a possible role for the NF2 gene in these neoplasms. In a series of adult patients with ependymoma, survival rates at 5 and 10 years were approximately 57% and 45%, respectively.
  • Anaplastic ependymoma.
  • Neuroepithelial tumors of uncertain origin.
  • Astroblastoma.
  • Chordoid glioma of the third ventricle.
  • Gliomatosis cerebri.

Neuronal and mixed neuronal-glial tumors (some glial component may be present)

  • Gangliocytoma.
  • Ganglioglioma.
  • Desmoplastic infantile astrocytoma / ganglioglioma.
  • Dysembryoplastic neuroepithelial tumor.
  • Central neurocytoma.
  • Cerebellar liponeurocytoma
  • Paraganglioma.

Nonglial tumors

  • Embryonal tumors.
  • Ependymoblastoma.
  • Medulloblastoma.
  • Supratentorial primitive neuroectodermal tumor (PNET).
  • Choroid plexus tumors.
  • Choroid plexus papilloma.
  • Choroid plexus carcinoma.
  • Pineal parenchymal tumors.
  • Pineoblastoma.
  • Pineocytoma.
  • Pineal parenchymal tumor of intermediate differentiation.

Meningeal tumors

  • Meningioma.
  • Hemangiopericytoma.
  • Melanocytic lesion.

Germ cell tumors

  • Germinoma.
  • Embryonal carcinoma.
  • Yolk-sac tumor (endodermal-sinus tumor).
  • Choriocarcinoma.
  • Teratoma.
  • Mixed germ cell tumor.

Tumors of the sellar region

  • Pituitary adenoma.
  • Pituitary carcinoma.
  • Craniopharyngioma.

Tumors of uncertain histogenesis

  • Capillary hemangioblastoma.

Primary CNS lymphoma

Tumors of peripheral nerves that affect the CNS

  • Schwannoma.

Metastatic tumors

Template:SIB


Template:WikiDoc Sources