Saphenous vein graft: Difference between revisions

Jump to navigation Jump to search
Line 137: Line 137:


==Additional Resources==
==Additional Resources==
 
{{refbegin|2}}
* S. A. Hassantash, B. Bikdeli, S. Kalantarian, M. Sadeghian, and H. Afshar Pathophysiology of Aortocoronary Saphenous Vein Bypass Graft Disease Asian Cardiovasc Thorac Ann, August 1, 2008; 16(4): 331 - 336.  
* S. A. Hassantash, B. Bikdeli, S. Kalantarian, M. Sadeghian, and H. Afshar Pathophysiology of Aortocoronary Saphenous Vein Bypass Graft Disease Asian Cardiovasc Thorac Ann, August 1, 2008; 16(4): 331 - 336.  
* A. Coolong, D. S. Baim, R. E. Kuntz, A. J. O'Malley, S. Marulkar, D. E. Cutlip, J. J. Popma, and L. Mauri
* A. Coolong, D. S. Baim, R. E. Kuntz, A. J. O'Malley, S. Marulkar, D. E. Cutlip, J. J. Popma, and L. Mauri. Saphenous Vein Graft Stenting and Major Adverse Cardiac Events: A Predictive Model Derived From a Pooled Analysis of 3958 Patients. Circulation, February 12, 2008; 117(6): 790 - 797.  
Saphenous Vein Graft Stenting and Major Adverse Cardiac Events: A Predictive Model Derived From a Pooled Analysis of 3958 Patients. Circulation, February 12, 2008; 117(6): 790 - 797.  
 
 
* R. F. Padera Jr. and F. J. Schoen Pathology of Cardiac Surgery Card. Surg. Adult, January 1, 2008; 3(2008): 111 - 178.   
* R. F. Padera Jr. and F. J. Schoen Pathology of Cardiac Surgery Card. Surg. Adult, January 1, 2008; 3(2008): 111 - 178.   
Line 197: Line 196:
* A. Y. Kim, P. L. Walinsky, F. D. Kolodgie, C. Bian, J. L. Sperry, C. B. Deming, E. A. Peck, J. G. Shake, G. B. Ang, R. H. Sohn, et al. Early Loss of Thrombomodulin Expression Impairs Vein Graft Thromboresistance: Implications for Vein Graft Failure Circ. Res., February 8, 2002; 90(2): 205 - 212.
* A. Y. Kim, P. L. Walinsky, F. D. Kolodgie, C. Bian, J. L. Sperry, C. B. Deming, E. A. Peck, J. G. Shake, G. B. Ang, R. H. Sohn, et al. Early Loss of Thrombomodulin Expression Impairs Vein Graft Thromboresistance: Implications for Vein Graft Failure Circ. Res., February 8, 2002; 90(2): 205 - 212.
{{refend}}


==See Also==
==See Also==

Revision as of 02:20, 5 April 2009

Saphenous vein graft

WikiDoc Resources for Saphenous vein graft

Articles

Most recent articles on Saphenous vein graft

Most cited articles on Saphenous vein graft

Review articles on Saphenous vein graft

Articles on Saphenous vein graft in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Saphenous vein graft

Images of Saphenous vein graft

Photos of Saphenous vein graft

Podcasts & MP3s on Saphenous vein graft

Videos on Saphenous vein graft

Evidence Based Medicine

Cochrane Collaboration on Saphenous vein graft

Bandolier on Saphenous vein graft

TRIP on Saphenous vein graft

Clinical Trials

Ongoing Trials on Saphenous vein graft at Clinical Trials.gov

Trial results on Saphenous vein graft

Clinical Trials on Saphenous vein graft at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Saphenous vein graft

NICE Guidance on Saphenous vein graft

NHS PRODIGY Guidance

FDA on Saphenous vein graft

CDC on Saphenous vein graft

Books

Books on Saphenous vein graft

News

Saphenous vein graft in the news

Be alerted to news on Saphenous vein graft

News trends on Saphenous vein graft

Commentary

Blogs on Saphenous vein graft

Definitions

Definitions of Saphenous vein graft

Patient Resources / Community

Patient resources on Saphenous vein graft

Discussion groups on Saphenous vein graft

Patient Handouts on Saphenous vein graft

Directions to Hospitals Treating Saphenous vein graft

Risk calculators and risk factors for Saphenous vein graft

Healthcare Provider Resources

Symptoms of Saphenous vein graft

Causes & Risk Factors for Saphenous vein graft

Diagnostic studies for Saphenous vein graft

Treatment of Saphenous vein graft

Continuing Medical Education (CME)

CME Programs on Saphenous vein graft

International

Saphenous vein graft en Espanol

Saphenous vein graft en Francais

Business

Saphenous vein graft in the Marketplace

Patents on Saphenous vein graft

Experimental / Informatics

List of terms related to Saphenous vein graft

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Associate Editor-In-Chief: Cafer Zorkun, M.D., Ph.D. [2]

Please Join in Editing This Page and Apply to be an Editor-In-Chief for this topic: There can be one or more than one Editor-In-Chief. You may also apply to be an Associate Editor-In-Chief of one of the subtopics below. Please mail us [3] to indicate your interest in serving either as an Editor-In-Chief of the entire topic or as an Associate Editor-In-Chief for a subtopic. Please be sure to attach your CV and or biographical sketch.

Overview

Normal Anatomy

The great saphenous vein (GSV) originates from where the dorsal vein of the first digit (the large toe) merges with the dorsal venous arch of the foot.

After passing anterior to the medial malleolus (where it often can be visualized and palpated), it runs up the medial side of the leg. At the knee, it runs over the posterior border of the medial epicondyle of the femur bone.

The great saphenous vein then courses laterally to lie on the anterior surface of the thigh before entering an opening in the fascia lata called the saphenous opening. It joins with the femoral vein in the region of the femoral triangle at the saphenofemoral junction.

The small saphenous vein (also lesser saphenous vein) is originated where the dorsal vein from the fifth digit (smallest toe) merges with the dorsal venous arch of the foot, which attaches to the great saphenous vein. It is considered a superficial vein and is subcutaneous (just under the skin). From its origin, it courses around the lateral aspect of the foot (inferior and posterior to the lateral malleolus) and runs along the posterior aspect of the leg (with the sural nerve), passes between the heads of the gastrocnemius muscle, and drains into the popliteal vein, approximately at or above the level of the knee joint.

Preparation (Saphenous vein harvesting)

Mini Invasive Technique

Side Effects of Saphenous Vein Stripping

  • Saphenous nerve injury

Diagnostic & Evaluation Findings

Coronary Angiography

CT Angiography

MR Angiography

Pathological Findings

Images courtesy of Professor Peter Anderson DVM PhD and published with permission © PEIR, University of Alabama at Birmingham, Department of Pathology

Saphenous vein coronary bypass graft: Gross, natural color, external view of heart with thrombosed veins


Saphenous vein coronary bypass graft: Thrombosis, Acute: Gross, fixed tissue but well shown cross sections of bypass graft and anastomotic site with thrombosis. 61 yo male, with and acute infarct treated with streptokinase and two days later had bypass. Died 5 days post op. Two veins are thrombosed


Myocardial Infarct Acute Reflow Type: Gross, fixed tissue but good color. A very enlarged heart with moderate LV dilation and high anterior wall hemorrhagic infarct. Initially treated with streptokinase and two days later had saphenous vein grafts. Both grafts are thrombosed. He died after 5 days









Saphenous Vein Graft Diseases

Venospastic Phenomena of Saphenous Vein Bypass Grafts

Saphenous Vein Graft Aneurysms

It is also known as SVGA, aortocoronary saphenous vein graft aneurysms, saphenous vein graft aneurysm disease and saphenous vein graft aneurysmal dilatation.

Causes of Saphenous Vein Graft Aneurysms

Saphenous Vein Graft Degeneration

Saphenous Vein Graft Occlusion

Amyloidosis of Saphenous Coronary Bypass Grafts [1] [2] [3] [4] [5]

Rupture of the Saphenous Vein Coronary Artery Bypass Grafts

  • Aspergillus species necrotizing vasculitis

Treatment

Thrombolysis

PCI

Plain Old Balloon Angioplasty (POBA)
Bare Metal Stents
Drug Eluting Stents
Excimer Laser Coronary Angioplasty (ELCA) of Saphenous Vein Grafts

At the end of 80's [6], ELCA was introduced and thought to be particularly suitable for saphenous vein grafts that were otherwise difficult to treat with balloon angioplasty alone.[7]

Surgery (Re-do)

Videos

<youtube v=VbdE6JWdY1s/>
<youtube v=QthyR0bTHzc/>
<youtube v=sV-qE2SIkJU/>

References

  1. Marti MC, Bouchardy B, Cox JN. Aortocoronary bypass with autogenous saphenous vein grafts: histopathological aspects. Virchows Arch Abt A Path Anat 1971; 352: 255–66.
  2. Garrett HE, Dennis EW, DeBakey ME. Aortocoronary bypass with saphenous vein graft. JAMA 1973; 223: 792–4.
  3. Zemva A, Ferluga D, Zorc M, Popovic M, Porenta OV, Radovanovic N. Amyloidosis in saphenous vein aortocoronary bypass grafts. J Cardiovasc Surg 1990; 31: 441–4.
  4. Salerno TA, Wasan SM, Charrette EJ. Prospective analysis of heart biopsies in coronary artery surgery. Ann Thorac Surg 1979; 28: 436–9.
  5. Pelosi F, Capehart J, Roberts WC. Effectiveness of cardiac transplantation for primary (AL) cardiac amyloidosis. Am J Cardiol 1997; 79: 532–5.
  6. Litvack F, Grundfest WS, Goldenberg T, et al. Percutaneous excimer laser angioplasty of aortocoronary saphenous vein grafts. J Am CoIlCardiol 1989; 14:803-8.
  7. Bittl JA, Sanborn TA, Tcheng JE, et al. Clinical success, complications and restenosis rates with excimer laser coronary angioplasty. Am J Cardiol 1992; 70: 1533-9.

Additional Resources

  • S. A. Hassantash, B. Bikdeli, S. Kalantarian, M. Sadeghian, and H. Afshar Pathophysiology of Aortocoronary Saphenous Vein Bypass Graft Disease Asian Cardiovasc Thorac Ann, August 1, 2008; 16(4): 331 - 336.
  • A. Coolong, D. S. Baim, R. E. Kuntz, A. J. O'Malley, S. Marulkar, D. E. Cutlip, J. J. Popma, and L. Mauri. Saphenous Vein Graft Stenting and Major Adverse Cardiac Events: A Predictive Model Derived From a Pooled Analysis of 3958 Patients. Circulation, February 12, 2008; 117(6): 790 - 797.
  • R. F. Padera Jr. and F. J. Schoen Pathology of Cardiac Surgery Card. Surg. Adult, January 1, 2008; 3(2008): 111 - 178.
  • E. Gongora and T. M. Sundt III Myocardial Revascularization with Cardiopulmonary Bypass Card. Surg. Adult, January 1, 2008; 3(2008): 599 - 632.
  • T. Schachner, G. Laufer, and J. Bonatti. In vivo (animal) models of vein graft disease. Eur. J. Cardiothorac. Surg., September 1, 2006; 30(3): 451 - 463.
  • U. Khanderia, K. A. Townsend, K. Eagle, and R. Prager. Statin Initiation Following Coronary Artery Bypass Grafting: Outcome of a Hospital Discharge Protocol Chest, February 1, 2005; 127(2): 455 - 463.
  • P. Widimsky, Z. Straka, P. Stros, K. Jirasek, J. Dvorak, J. Votava, L. Lisa, T. Budesinsky, M. Kolesar, T. Vanek, et al. One-Year Coronary Bypass Graft Patency: A Randomized Comparison Between Off-Pump and On-Pump Surgery Angiographic Results of the PRAGUE-4 Trial Circulation, November 30, 2004; 110 (22): 3418 - 3423.
  • M. A. Hlatky, D. B. Boothroyd, K. A. Melsop, M. M. Brooks, D. B. Mark, B. Pitt, G. S. Reeder, W. J. Rogers, T. J. Ryan, P. L. Whitlow, et al. Medical Costs and Quality of Life 10 to 12 Years After Randomization to Angioplasty or Bypass Surgery for Multivessel Coronary Artery Disease Circulation, October 5, 2004; 110 (14): 1960 - 1966.
  • J. G. Lobo Filho, M. C. d. A. Leitao, and A. J. d. V. Forte Studying the lumen in composite Y internal thoracic artery-saphenous vein grafts J. Thorac. Cardiovasc. Surg., September 1, 2004; 128(3): 490 - 491.
  • E. McGregor, L. Kempster, R. Wait, M. Gosling, M. J. Dunn, and J. T. Powell. F-actin Capping (CapZ) and Other Contractile Saphenous Vein Smooth Muscle Proteins Are Altered by Hemodynamic Stress: a proteomic approach Mol. Cell. Proteomics, February 1, 2004; 3(2): 115 - 124.
  • M. Endo, Y. Tomizawa, and H. Nishida Bilateral Versus Unilateral Internal Mammary Revascularization in Patients with Diabetes Circulation, September 16, 2003; 108(11): 1343 - 1349.
  • T. D. Rea, M. Crouthamel, M. S. Eisenberg, L. J. Becker, and A. R. Lima. Temporal Patterns in Long-Term Survival After Resuscitation From Out-of-Hospital Cardiac Arrest Circulation, September 9, 2003; 108(10): 1196 - 1201.
  • M. Hilker, T. Langin, U. Hake, F.-X. Schmid, W. Kuroczynski, H.-A. Lehr, H. Oelert, and M. Buerke Gene expression profiling of human stenotic aorto-coronary bypass grafts by cDNA array analysis Eur. J. Cardiothorac. Surg., April 1, 2003; 23(4): 620 - 625.
  • J. L. Sperry, C. B. Deming, C. Bian, P. L. Walinsky, D. A. Kass, F. D. Kolodgie, R. Virmani, A. Y. Kim, and J. J. Rade Wall Tension Is a Potent Negative Regulator of In Vivo Thrombomodulin Expression Circ. Res., January 10, 2003; 92(1): 41 - 47.
  • F. J. Schoen and R. F. Padera Jr. Cardiac Surgical Pathology Card. Surg. Adult, January 1, 2003; 2(2003): 119 - 185.
  • A. Y. Kim, P. L. Walinsky, F. D. Kolodgie, C. Bian, J. L. Sperry, C. B. Deming, E. A. Peck, J. G. Shake, G. B. Ang, R. H. Sohn, et al. Early Loss of Thrombomodulin Expression Impairs Vein Graft Thromboresistance: Implications for Vein Graft Failure Circ. Res., February 8, 2002; 90(2): 205 - 212.
  • K. B. Kim, C. Lim, C. Lee, I.-H. Chae, B.-H. Oh, M.-M. Lee, and Y.-B. Park Off-pump coronary artery bypass may decrease the patency of saphenous vein grafts Ann. Thorac. Surg., September 1, 2001; 72(3): S1033 - 1037.
  • Z. Yang, T. Kozai, B. van de Loo, H. Viswambharan, M. Lachat, M. I. Turina, T. Malinski, and T. F. Luscher

HMG-CoA reductase inhibition improves endothelial cell function and inhibits smooth muscle cell proliferation in human saphenous veins J. Am. Coll. Cardiol., November 1, 2000; 36(5): 1691 - 1697.

  • H. Hirose, A. Amano, S. Yoshida, A. Takahashi, N. Nagano, and T. Kohmoto Coronary Artery Bypass Grafting in the Elderly Chest, May 1, 2000; 117(5): 1262 - 1270.
  • P. Dylewicz, S. Bienkowska, L. Szczesniak, T. Rychlewski, I. Przywarska, M. Wilk, and A. Jastrzebski. Beneficial Effect of Short-term Endurance Training on Glucose Metabolism During Rehabilitation After Coronary Bypass Surgery. Chest, January 1, 2000; 117(1): 47 - 51.
  • D P Taggart The radial artery as a conduit for coronary artery bypass grafting Heart, October 1, 1999; 82(4): 409 - 410.
  • C. Shi, A. Patel, D. Zhang, H. Wang, P. Carmeliet, G. L. Reed, M.-E. Lee, E. Haber, and N. E. S. Sibinga. Plasminogen Is Not Required for Neointima Formation in a Mouse Model of Vein Graft Stenosis Circ. Res., April 30, 1999; 84(8): 883 - 890.
  • D. R. Holmes Jr and P. B. Berger. Percutaneous Revascularization of Occluded Vein Grafts : Is It Still a Temptation to Be Resisted? Circulation, January 12, 1999; 99(1): 8 - 11.
  • Y. K. Wong, M. Thomas, V. Tsang, P. J. Gallagher, and M. E. Ward. The prevalence of Chlamydia pneumoniae in atherosclerotic and nonatherosclerotic blood vessels of patients attending for redo and first time coronary artery bypass graft surgery. J. Am. Coll. Cardiol., January 1, 1999; 33(1): 152 - 156.
  • F. D. Loop Coronary artery surgery: the end of the beginning Eur. J. Cardiothorac. Surg., December 1, 1998; 14(6): 554 - 571.
  • Z. G. Zhu, H.-H. Li, and B.-R. Zhang. Expression of Endothelin-1 and Constitutional Nitric Oxide Synthase Messenger RNA in Saphenous Vein Endothelial Cells Exposed to Arterial Flow Shear Stress Ann. Thorac. Surg., November 1, 1997; 64(5): 1333 - 1338.
  • J. C. Hornberger, J. H. Best, and L. P. Garrison Jr. Cost-Effectiveness of Repeat Medical Procedures: Kidney Transplantation as an Example Med Decis Making, October 1, 1997; 17(4): 363 - 372.
  • R. A. Mangiafico, L. S. Malatino, M. Santonocito, R. S. Spada, F. A. Benedetto, and R.A. Mangiafico Plasma Endothelin-1 Release in Normal and Varicose Saphenous Veins. Angiology, September 1, 1997; 48(9): 769 - 774.
  • A. Y. Kim, P. L. Walinsky, F. D. Kolodgie, C. Bian, J. L. Sperry, C. B. Deming, E. A. Peck, J. G. Shake, G. B. Ang, R. H. Sohn, et al. Early Loss of Thrombomodulin Expression Impairs Vein Graft Thromboresistance: Implications for Vein Graft Failure Circ. Res., February 8, 2002; 90(2): 205 - 212.

See Also

External Links

Template:SIB

Template:WH Template:WS