ST elevation myocardial infarction pre-hospital care: Difference between revisions

Jump to navigation Jump to search
/* ACC / AHA Guidelines (Do Not Edit) {{cite journal |author=Antman EM, Anbe DT, Armstrong PW, et al |title=ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction: a report of the American College of Cardiology/Amer
/* ACC / AHA Guidelines (Do Not Edit) {{cite journal |author=Antman EM, Anbe DT, Armstrong PW, et al |title=ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction: a report of the American College of Cardiology/Amer
Line 49: Line 49:
==ACC / AHA Guidelines (Do Not Edit) <ref name="pmid15339869">{{cite journal |author=Antman EM, Anbe DT, Armstrong PW, ''et al'' |title=ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1999 Guidelines for the Management of Patients with Acute Myocardial Infarction) |journal=Circulation |volume=110 |issue=9 |pages=e82–292 |year=2004 |month=August |pmid=15339869 |doi= |url=http://circ.ahajournals.org/cgi/pmidlookup?view=long&pmid=15339869}}</ref>==
==ACC / AHA Guidelines (Do Not Edit) <ref name="pmid15339869">{{cite journal |author=Antman EM, Anbe DT, Armstrong PW, ''et al'' |title=ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1999 Guidelines for the Management of Patients with Acute Myocardial Infarction) |journal=Circulation |volume=110 |issue=9 |pages=e82–292 |year=2004 |month=August |pmid=15339869 |doi= |url=http://circ.ahajournals.org/cgi/pmidlookup?view=long&pmid=15339869}}</ref>==


{{cquote|'''Class I'''
{{cquote|
===Class I===


1. Prehospital [[EMS]] providers should administer 162 to 325 mg of [[aspirin]] (chewed) to [[chest pain]] patients suspected of having [[STEMI]] unless contraindicated or already taken by the patient. Although some trials have used enteric-coated aspirin for initial dosing, more rapid [[buccal absorption]] occurs with non–entericcoated formulations. ''(Level of Evidence: C)''
1. Prehospital [[EMS]] providers should administer 162 to 325 mg of [[aspirin]] (chewed) to [[chest pain]] patients suspected of having [[STEMI]] unless contraindicated or already taken by the patient. Although some trials have used enteric-coated aspirin for initial dosing, more rapid buccal absorption occurs with non–entericcoated formulations. ''(Level of Evidence: C)''


'''Class IIa'''
'''Class IIa'''


1. It is reasonable for all 9-1-1 dispatchers to advise patients without a history of [[aspirin allergy]] who have symptoms of [[STEMI]] to chew [[aspirin]] (162 to 325 mg) while awaiting arrival of prehospital [[EMS]] providers. Although some trials have used enteric-coated aspirin for initial dosing, more rapid buccal absorption occurs with non–enteric-coated formulations. '''(Level
1. It is reasonable for all 9-1-1 dispatchers to advise patients without a history of [[aspirin]] [[allergy]] who have symptoms of [[STEMI]] to chew [[aspirin]] (162 to 325 mg) while awaiting arrival of prehospital [[EMS]] providers. Although some trials have used enteric-coated aspirin for initial dosing, more rapid buccal absorption occurs with non–enteric-coated formulations. '''(Level
of Evidence: C)'''
of Evidence: C)'''



Revision as of 15:43, 28 May 2009

Myocardial infarction
ICD-10 I21-I22
ICD-9 410
DiseasesDB 8664
MedlinePlus 000195
eMedicine med/1567  emerg/327 ped/2520

WikiDoc Resources for ST elevation myocardial infarction pre-hospital care

Articles

Most recent articles on ST elevation myocardial infarction pre-hospital care

Most cited articles on ST elevation myocardial infarction pre-hospital care

Review articles on ST elevation myocardial infarction pre-hospital care

Articles on ST elevation myocardial infarction pre-hospital care in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on ST elevation myocardial infarction pre-hospital care

Images of ST elevation myocardial infarction pre-hospital care

Photos of ST elevation myocardial infarction pre-hospital care

Podcasts & MP3s on ST elevation myocardial infarction pre-hospital care

Videos on ST elevation myocardial infarction pre-hospital care

Evidence Based Medicine

Cochrane Collaboration on ST elevation myocardial infarction pre-hospital care

Bandolier on ST elevation myocardial infarction pre-hospital care

TRIP on ST elevation myocardial infarction pre-hospital care

Clinical Trials

Ongoing Trials on ST elevation myocardial infarction pre-hospital care at Clinical Trials.gov

Trial results on ST elevation myocardial infarction pre-hospital care

Clinical Trials on ST elevation myocardial infarction pre-hospital care at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on ST elevation myocardial infarction pre-hospital care

NICE Guidance on ST elevation myocardial infarction pre-hospital care

NHS PRODIGY Guidance

FDA on ST elevation myocardial infarction pre-hospital care

CDC on ST elevation myocardial infarction pre-hospital care

Books

Books on ST elevation myocardial infarction pre-hospital care

News

ST elevation myocardial infarction pre-hospital care in the news

Be alerted to news on ST elevation myocardial infarction pre-hospital care

News trends on ST elevation myocardial infarction pre-hospital care

Commentary

Blogs on ST elevation myocardial infarction pre-hospital care

Definitions

Definitions of ST elevation myocardial infarction pre-hospital care

Patient Resources / Community

Patient resources on ST elevation myocardial infarction pre-hospital care

Discussion groups on ST elevation myocardial infarction pre-hospital care

Patient Handouts on ST elevation myocardial infarction pre-hospital care

Directions to Hospitals Treating ST elevation myocardial infarction pre-hospital care

Risk calculators and risk factors for ST elevation myocardial infarction pre-hospital care

Healthcare Provider Resources

Symptoms of ST elevation myocardial infarction pre-hospital care

Causes & Risk Factors for ST elevation myocardial infarction pre-hospital care

Diagnostic studies for ST elevation myocardial infarction pre-hospital care

Treatment of ST elevation myocardial infarction pre-hospital care

Continuing Medical Education (CME)

CME Programs on ST elevation myocardial infarction pre-hospital care

International

ST elevation myocardial infarction pre-hospital care en Espanol

ST elevation myocardial infarction pre-hospital care en Francais

Business

ST elevation myocardial infarction pre-hospital care in the Marketplace

Patents on ST elevation myocardial infarction pre-hospital care

Experimental / Informatics

List of terms related to ST elevation myocardial infarction pre-hospital care

Cardiology Network

Discuss ST elevation myocardial infarction pre-hospital care further in the WikiDoc Cardiology Network
Adult Congenital
Biomarkers
Cardiac Rehabilitation
Congestive Heart Failure
CT Angiography
Echocardiography
Electrophysiology
Cardiology General
Genetics
Health Economics
Hypertension
Interventional Cardiology
MRI
Nuclear Cardiology
Peripheral Arterial Disease
Prevention
Public Policy
Pulmonary Embolism
Stable Angina
Valvular Heart Disease
Vascular Medicine

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Associate Editors-In-Chief: Cafer Zorkun, M.D., Ph.D. [2]

Please Join in Editing This Page and Apply to be an Editor-In-Chief for this topic: There can be one or more than one Editor-In-Chief. You may also apply to be an Associate Editor-In-Chief of one of the subtopics below. Please mail us [3] to indicate your interest in serving either as an Editor-In-Chief of the entire topic or as an Associate Editor-In-Chief for a subtopic. Please be sure to attach your CV and or biographical sketch.

Symtpom to Door Time

When symptoms of myocardial infarction occur, patients unfortunately often delay seeking medical attention. [1] Prior to 2000, this delay was almost 3 hours in the United States, but as a result of public health education efforts, this delay has now been shorted to 1.5 to 2.0 hours. [1] [2] Patients often drive themselves to the hospital instead of calling 9-1-1. [3] Further public health efforts appear to be warranted to urge patients to seek medical attention more quickly and to call for 9-1-1 to assure safe transport to the hospital.

Pre Hospital Care

In some countries, such as France, physicians staff mobile intensive care units and pre-hospital care can begin in the ambulance. These pre-hospital therapies in the mobile intensive care setting include glycoprtein IIbIIIa inhibition (as was studied in the On TIME 2 study), unfractionated heparin, nitroglycerin, clopidogrel, oxygen and non-enteric coated aspirin. Pre-hsopital administration can speed the delivery of these agents by approximately 30 minutes, but transfer to the hospital should not be delayed by the administration of these agents. Pre-hospital therapy with aspirin, nitroglycerin and oxygen is common in the United States. The time to administration of a fibrinolytic agent can be shortened by 30 minutes with pre-hospital administration.[4]

Role of First Responders Before the Arrival of Paramedics

In the United States, volunteers and fire fighters are permitted to initiate emergency care prior to the arrival of highly trained paramedics. These first responders can begin CPR and if adequately trained, can defibrillate the patient using an automatic external defibrillator (AED). Since the publication of data showing that the availability of automated external defibrillators (AEDs) in public places may significantly increase chances of survival, [5] [6] [7] many of these have been installed in public buildings, public transport facilities, and in non-ambulance emergency vehicles (e.g. police cars and fire engines). AEDs analyze the heart's rhythm and determine whether the rhythm is amenable to defibrillation ("shockable"), as in ventricular tachycardia and ventricular fibrillation. This effort has been expanded to include laypersons as part of the Public Access Defibrillation (PAD) program in communities. This effort has been effective as well, particularly when deployed by community members with some training such as flight attendants and security personnel. [8]

Steps to be Taken by Paramedics on Arrival at the Scene of a STEMI

If an Automated External Defibrillator (AED) is available the rescuer should immediately bring the AED to the patient's side and be prepared to follow its instructions should the victim lose consciousness. If possible the rescuer should obtain basic information from the victim, in case the patient is unable to answer questions once emergency medical technicians arrive (if the patient becomes unconscious). The victim's name and any information regarding the nature of the victims pain will useful to health care providers. Also the exact time that these symptoms started, what the patient was doing at the onset of symptoms, and anything else that might give clues to the pathology of the chest pain. It is also very important to relay any actions that have been taken, such as the number or dose of aspirin or nitroglycerin given, to the EMS personnel. Other general first aid principles include monitoring pulse, breathing, level of consciousness and, if possible, the blood pressure of the patient. In case of cardiac arrest, cardiopulmonary resuscitation (CPR) can be administered.

Emergency services

Emergency Medical Services (EMS) Systems vary considerably in their ability to evaluate and treat patients with suspected acute myocardial infarction. EMS services are staffed by either volunteers, fire fighters, or highly trained paramedics. As a result in the variability in training, some EMS services provide as little as first aid and early defibrillation. Others employ highly trained paramedics with sophisticated technology and advanced protocols. Early access to EMS is promoted by a 9-1-1 system currently available to 90% of the population in the United States. Most are capable of providing oxygen, IV access, sublingual nitroglycerine, morphine, and aspirin. Few are capable of providing thrombolytic therapy in the pre-hospital setting.[4][9]

With primary PCI emerging as the preferred therapy for ST segment elevation myocardial infarction, EMS can play a key role in reducing door to balloon intervals (the time from presentation to a hospital ER to the restoration of coronary artery blood flow) by performing a 12 lead ECG in the field and using this information to triage the patient to the most appropriate medical facility.[10][11][12]In addition, the 12 lead ECG can be transmitted to the receiving hospital, which enables time saving decisions to be made prior to the patient's arrival. This may include a "cardiac alert" or "STEMI alert" that calls in off duty personnel in areas where the cardiac cath lab is not staffed 24 hours a day.[13] Even in the absence of a formal alerting program, pre-hospital 12 lead ECGs are independently associated with reduced door to treatment intervals in the emergency department.[14]

STEMI Management During Air travel

Certified personnel traveling by commercial aircraft may be able to assist an MI patient by using the on-board first aid kit, which may contain some cardiac drugs (such as glyceryl trinitrate spray, aspirin, or opioid painkillers) and oxygen. Pilots may divert the flight to land at a nearby airport. Automatic external defibrillators are being introduced by some airlines, and they can be used by both on-board and ground-based physicians.[15] If there is no pharmacotherapy provided by the airline, soemtimes other passengers will have in their possession cardiac medications that can be of use. If the patient is hypotensive, they should be placed in Trendelenberg position.

Wilderness first aid

In wilderness first aid, a possible heart attack justifies evacuation by the fastest available means, including MEDEVAC.

ACC / AHA Guidelines (Do Not Edit) [16]

Class I

1. Prehospital EMS providers should administer 162 to 325 mg of aspirin (chewed) to chest pain patients suspected of having STEMI unless contraindicated or already taken by the patient. Although some trials have used enteric-coated aspirin for initial dosing, more rapid buccal absorption occurs with non–entericcoated formulations. (Level of Evidence: C)

Class IIa

1. It is reasonable for all 9-1-1 dispatchers to advise patients without a history of aspirin allergy who have symptoms of STEMI to chew aspirin (162 to 325 mg) while awaiting arrival of prehospital EMS providers. Although some trials have used enteric-coated aspirin for initial dosing, more rapid buccal absorption occurs with non–enteric-coated formulations. (Level of Evidence: C)

2. It is reasonable that all ACLS providers perform and evaluate 12-lead ECGs routinely on chest pain patients suspected of STEMI. (Level of Evidence: B)

3. If the ECG shows evidence of STEMI, it is reasonable that prehospital ACLS providers review a reperfusion “checklist” and relay the ECG and checklist findings to a predetermined medical control facility and/or receiving hospital. (Level of Evidence: C)

Sources

  • The 2004 ACC/AHA Guidelines for the Management of Patients With ST-Elevation Myocardial Infarction [16]
  • The 2007 Focused Update of the ACC/AHA 2004 Guidelines for the Management of Patients with ST-Elevation Myocardial Infarction [17]

References

  1. 1.0 1.1 Gibson CM (2001). "Time is myocardium and time is outcomes". Circulation. 104 (22): 2632–4. PMID 11723008. Unknown parameter |month= ignored (help)
  2. Gibson CM, Pride YB, Frederick PD; et al. (2008). "Trends in reperfusion strategies, door-to-needle and door-to-balloon times, and in-hospital mortality among patients with ST-segment elevation myocardial infarction enrolled in the National Registry of Myocardial Infarction from 1990 to 2006". Am. Heart J. 156 (6): 1035–44. doi:10.1016/j.ahj.2008.07.029. PMID 19032997. Unknown parameter |month= ignored (help)
  3. Brown AL, Mann NC, Daya M; et al. (2000). "Demographic, belief, and situational factors influencing the decision to utilize emergency medical services among chest pain patients. Rapid Early Action for Coronary Treatment (REACT) study". Circulation. 102 (2): 173–8. PMID 10889127. Unknown parameter |month= ignored (help)
  4. 4.0 4.1 Morrow DA, Antman EM, Sayah A; et al. (2002). "Evaluation of the time saved by prehospital initiation of reteplase for ST-elevation myocardial infarction: results of The Early Retavase-Thrombolysis in Myocardial Infarction (ER-TIMI) 19 trial". J. Am. Coll. Cardiol. 40 (1): 71–7. PMID 12103258. Unknown parameter |month= ignored (help)
  5. Cummins RO. From concept to standard-of-care? Review of the clinical experience with automated external defibrillators. Ann Emerg Med 1989;18:1269-75
  6. Hallstrom AP, Cobb LA, Johnson E, Copass MK. Dispatcher assisted CPR: implementation and potential benefit: a 12-year study. Resuscitation 2003;57:123-9.
  7. Home Automatic External Defibrillator Trial. National Heart,Lung, and Blood Institute (NHLBI). Available at: http://www.clinicaltrials.gov/ct/show/NCT00047411?order=46. 2004. NLM Identifier: NCT00047411. Accessed December 22, 2003.
  8. Caffrey SL, Willoughby PJ, Pepe PE, Becker LB. Public use of automated external defibrillators. N Engl J Med 2002;347:1242-7.
  9. Morrison LJ, Verbeek PR, McDonald AC, Sawadsky BV, Cook DJ (2000). "Mortality and prehospital thrombolysis for acute myocardial infarction: A meta-analysis". JAMA. 283 (20): 2686–92. PMID 10819952.
  10. Rokos IC, Larson DM, Henry TD; et al. (2006). "Rationale for establishing regional ST-elevation myocardial infarction receiving center (SRC) networks". Am. Heart J. 152 (4): 661–7. doi:10.1016/j.ahj.2006.06.001. PMID 16996830. Unknown parameter |month= ignored (help)
  11. Moyer P, Feldman J, Levine J; et al. (2004). "Implications of the Mechanical (PCI) vs Thrombolytic Controversy for ST Segment Elevation Myocardial Infarction on the Organization of Emergency Medical Services: The Boston EMS Experience". Crit Pathw Cardiol. 3 (2): 53–61. doi:10.1097/01.hpc.0000128714.35330.6d. PMID 18340140. Unknown parameter |month= ignored (help)
  12. Henry TD, Atkins JM, Cunningham MS; et al. (2006). "ST-segment elevation myocardial infarction: recommendations on triage of patients to heart attack centers: is it time for a national policy for the treatment of ST-segment elevation myocardial infarction?". J. Am. Coll. Cardiol. 47 (7): 1339–45. doi:10.1016/j.jacc.2005.05.101. PMID 16580518. Unknown parameter |month= ignored (help)
  13. Rokos I. and Bouthillet T., "The emergency medical systems-to-balloon (E2B) challenge: building on the foundations of the D2B Alliance," STEMI Systems, Issue Two, May 2007. Accessed June 16, 2007.
  14. Cannon CP at al. Management of Acute Coronary Syndromes. p. 176. New Jersey: Humana Press, 1999. ISBN 0-89603-552-2.
  15. Dowdall N (2000). ""Is there a doctor on the aircraft?" Top 10 in-flight medical emergencies". BMJ. 321 (7272): 1336–7. PMC 1119071. PMID 11090520. Unknown parameter |month= ignored (help)
  16. 16.0 16.1 Antman EM, Anbe DT, Armstrong PW; et al. (2004). "ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1999 Guidelines for the Management of Patients with Acute Myocardial Infarction)". Circulation. 110 (9): e82–292. PMID 15339869. Unknown parameter |month= ignored (help)
  17. Antman EM, Hand M, Armstrong PW; et al. (2008). "2007 Focused Update of the ACC/AHA 2004 Guidelines for the Management of Patients With ST-Elevation Myocardial Infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines: developed in collaboration With the Canadian Cardiovascular Society endorsed by the American Academy of Family Physicians: 2007 Writing Group to Review New Evidence and Update the ACC/AHA 2004 Guidelines for the Management of Patients With ST-Elevation Myocardial Infarction, Writing on Behalf of the 2004 Writing Committee". Circulation. 117 (2): 296–329. doi:10.1161/CIRCULATIONAHA.107.188209. PMID 18071078. Unknown parameter |month= ignored (help)

External links


Template:WikiDoc Sources