Chronic stable angina treatment calcium channel blockers: Difference between revisions

Jump to navigation Jump to search
Lakshmi Gopalakrishnan (talk | contribs)
No edit summary
Lakshmi Gopalakrishnan (talk | contribs)
No edit summary
Line 4: Line 4:


==Overview==
==Overview==
Calcium channel blockers consist of three sub-classes, namely dihydropyridines (e.g., [[nifedipine]]), phenylalkylamines (e.g., [[verapamil]]) and modified benzothiazepines (e.g., [[diltiazem]]). The beneficial effects of [[CCBs]] include reduction in the [[afterload]], epicardial vessel vasodilation, enhancement of the coronary collateral flow with subsequent sub-endocardial perfusion. [[verapamil|Long-acting calcium channel blockers]] are an '''effective antianginal agent''' and are considered to be the first choice in patients with a contra-indication to [[Chronic stable angina treatment beta blockers|beta-blocker]] and specifically to control symptoms in patients with [[Coronary Vasospasm|vasospastic angina]], however, [[dihydropyridines|short-acting CCBs]] such as [[nifedipine]] are '''avoided''' due to an increased risk of [[myocardial infarction]] and mortality.  
Calcium channel blockers (CCBs) consist of three sub-classes, namely dihydropyridines (e.g., [[nifedipine]]), phenylalkylamines (e.g., [[verapamil]]) and modified benzothiazepines (e.g., [[diltiazem]]). The beneficial '''anti-anginal effects''' of CCB include reduction in the afterload consequent to systemic vasodilation as well as epicardial vessel vasodilation, enhancement of the coronary collateral flow with subsequent sub-endocardial perfusion due to the inhibition of calcium influx via L-type channels.<ref name="pmid12515758">Gibbons RJ, Abrams J, Chatterjee K, Daley J, Deedwania PC, Douglas JS et al. (2003) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=12515758 ACC/AHA 2002 guideline update for the management of patients with chronic stable angina--summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients With Chronic Stable Angina).] ''Circulation'' 107 (1):149-58.[http://content.onlinejacc.org/cgi/reprint/41/1/159.pdf] PMID: [http://pubmed.gov/12515758 12515758]</ref> [[verapamil|Long-acting calcium channel blockers]]<ref name="pmid1884725">Karlson BW, Emanuelsson H, Herlitz J, Nilsson JE, Olsson G (1991) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=1884725 Evaluation of the antianginal effect of nifedipine: influence of formulation dependent pharmacokinetics.] ''Eur J Clin Pharmacol'' 40 (5):501-6. PMID: [http://pubmed.gov/1884725 1884725]</ref> are an effective antianginal agent and are considered to be the first choice in post-MI patients with a contra-indication to [[Chronic stable angina treatment beta blockers|beta-blocker]] and specifically to control symptoms in patients with [[Coronary Vasospasm|vasospastic angina]].<ref name="pmid1959210">Waters D (1991) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=1959210 Proischemic complications of dihydropyridine calcium channel blockers.] ''Circulation'' 84 (6):2598-600. PMID: [http://pubmed.gov/1959210 1959210]</ref> However, [[dihydropyridines|short-acting CCBs]] such as [[nifedipine]] are '''avoided''' due to an increased risk of myocardial infarction and mortality.<ref name="pmid15536108">Nissen SE, Tuzcu EM, Libby P, Thompson PD, Ghali M, Garza D et al. (2004) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=15536108 Effect of antihypertensive agents on cardiovascular events in patients with coronary disease and normal blood pressure: the CAMELOT study: a randomized controlled trial.] ''JAMA'' 292 (18):2217-25. [http://dx.doi.org/10.1001/jama.292.18.2217 DOI:10.1001/jama.292.18.2217] PMID: [http://pubmed.gov/15536108 15536108]</ref><ref name="pmid9652879">Savonitto S, Ardissino D (1998) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=9652879 Selection of drug therapy in stable angina pectoris.] ''Cardiovasc Drugs Ther'' 12 (2):197-210. PMID: [http://pubmed.gov/9652879 9652879]</ref><ref name="pmid10448616">Thadani U (1999) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=10448616 Treatment of stable angina.] ''Curr Opin Cardiol'' 14 (4):349-58. PMID: [http://pubmed.gov/10448616 10448616]</ref>


==Mechanisms of benefit==
==Mechanisms of benefit==
*Calcium channel blockers reduce the transmembrane flux of calcium via slow calcium channels.  
*Calcium channel blockers reduce the trans-membrane flux of calcium via inhibition of slow calcium channels.


*The [[dihydropyridines]] (for example [[nifedipine]]), exert a greater inhibitory effect on vascular smooth muscle than on the myocardium.  Thus, the major therapeutic effect can be expected to be peripheral or coronary vasodilation.  
*[[Dihydropyridines]] (e.g., [[nifedipine]]) exert a greater inhibitory effect on vascular smooth muscle than on the myocardium.  Thus, major therapeutic effect are expected to be peripheral and coronary vasodilation.  
:*These agents, however, also exert a negative inotropic effect and therefore can produce myocardial depression, which is less pronounced with [[amlodipine]] and [[nisoldipine]].
:*'''Coronary vasodilation''' consequent to vasodilation of both conductance and resistance coronary vessels as well as enhancement of the coronary collateral flow subsequently results in sub-endocardial perfusion.
:*The peripheral vasodilation caused by the dihydropyridines also can cause reflex adrenergic activation, [[tachycardia]], and stimulation of the rennin-angiotensin system.
:*'''Peripheral vasodilation''' results in [[afterload|afterload reduction]] and subsequently results in reflex adrenergic activation, [[tachycardia]] and stimulation of the rennin-angiotensin system has been implicated as the mechanism for the potentially adverse cardiovascular effects.
:*These agents increase coronary blood flow owing to vasodilation of both conductance and resistance coronary vessels.
:*Intermittent adrenergic activation with short-acting dihydropyridines has been implicated as the mechanism for the potentially adverse cardiovascular effects.


*The non-dihydropyridine calcium channel blockers such as [[verapamil]] and [[diltiazem]] cause slowing of the sinus node and hence may potentiate the [[bradycardia]] of [[beta blockers]].
*[[Dihydropyridines]] also exert a '''negative inotropic effect''' and therefore can produce myocardial depression, which is less pronounced with [[amlodipine]] and [[nisoldipine]].  
:*However, they are less potent peripheral vasodilators than the dihydropyridines and less likely to cause [[hypotension]], flushing, and dizziness.
:*Calcium channel blockers such as [[verapamil]] and [[diltiazem]], may decrease heart rate and is associated with a reduced myocardial oxygen requirement.  


*Second generation vasoselective dihydropyridine derivative calcium channel blockers, such as [[amlodipine]] and felodipine, are well tolerated by patients with left ventricular dysfunction and even overt clinical [[heart failure]], and no increase in the risk of mortality has been described. Furthermore, vasoselective long acting dihydropyridines (such as amlodipine) and extended release (nifedipine) and slow release (verapamil and diltiazem) have all been shown to '''reduce frequency and symptoms of angina'''.
*Calcium channel blockers such as [[verapamil]] and [[diltiazem]] may decrease heart rate and is associated with a '''reduced myocardial oxygen consumption'''.  


*The new T channel types of calcium blockers are also effective in controlling [[hypertension]] and [[angina]]. They appear to possess little negative inotropic effect and produce little or no edema or constipation.
*Second generation vasoselective dihydropyridines such as [[amlodipine]] and [[felodipine]], are well tolerated by patients with left ventricular dysfunction and no increase in the risk of mortality has been described. Furthermore, vasoselective long acting dihydropyridines such as [[amlodipine]], [[nifedipine|extended release nifedipine]], [[verapamil|slow release verapamil]] and [[diltiazem]] have all been shown to '''reduce frequency and symptoms of angina.'''


==Indications==
==Indications==
*These agents are used as second line therapy when [[beta blockers]] are genuinely contraindicated.
*In patients with a contra-indication to [[Chronic stable angina treatment beta blockers|beta blockers]], the second drug of choice is [[CCB|CCB]].


*[[Amlodipine]] has minimal negative inotropic effects and can be combined with a [[beta blocker]] in patients with [[EF]] more than 35%.  
*In patients with [[EF|ejection fraction]] more than 35%, [[amlodipine]] can be combined with a [[beta blocker]] as it offers minimal negative inotropic effects.


*In patients with stable exertional angina, calcium channel blockers improve exercise tolerance (longer time to the onset of angina and to [[ST segment depression]]) during treadmill exercise tests. The mechanism of these beneficial effects is primarily decreased myocardial oxygen consumption. [[Calcium channel blockers]] and [[beta blockers]] in combination can produce synergistic beneficial effects in patients with stable angina pectoris.
*In patients with stable exertional angina, calcium channel blockers primarily decrease the myocardial oxygen consumption and hence '''improves exercise tolerance''', reduce the time to onset of [[angina]] and [[ST segment depression]] during treadmill tests.


*Epicardial coronary artery spasm is effectively relieved and prevented by calcium channel blockers, so that these are the agents of choice (along with nitrates) for the treatment of [[Chronic stable angina clinical subset- vasospastic angina|vasospastic angina]]. Some patients with coronary spasm may require a combination of two calcium channel blockers to achieve efficacy. 
*In patients with [[Chronic stable angina clinical subset- vasospastic angina|vasospastic angina]], [[CCB|CCBs]] along with [[Chronic stable angina treatment nitrates|nitrates]] effectively relieve and prevent epicardial coronary artery spasm. Some patients may also require a combination of two calcium channel blockers to achieve efficacy.
*In patients with [[Chronic stable angina clinical subset- mixed angina pectoris|mixed angina]], [[Chronic stable angina clinical subset- walk through angina pectoris|walk through]], [[Chronic stable angina clinical subset- postprandial angina pectoris|postprandial]], and [[Chronic stable angina clinical subset- nocturnal angina pectoris|late nocturnal angina]], in which increased coronary vascular tone appears to contribute to the pathogenesis of the [[ischemia]], the use of calcium channel blockers may be of benefit, particularly when [[nitrate]] therapy alone is inadequate.


*The new T channel types of calcium blockers are also effective in controlling [[hypertension]] and [[angina]].
*In patients with [[Chronic stable angina clinical subset- mixed angina pectoris|mixed angina]], [[Chronic stable angina clinical subset- walk through angina pectoris|walk through]], [[Chronic stable angina clinical subset- postprandial angina pectoris|postprandial]], and [[Chronic stable angina clinical subset- nocturnal angina pectoris|late nocturnal angina]], an increase in the  coronary vascular tone appears to be the contributing factor for the pathogenesis of [[ischemia]]. The above mentioned types of angina benefit with the use of calcium channel blockers, particularly when [[Chronic stable angina treatment nitrates|nitrate]] therapy alone is inadequate.


*In choosing a particular calcium channel blocker in a given patient, the hemodynamic profile should be considered. Dihydropyridines are preferable in the presence of sinus bradycardia, sinus node dysfunction, or atrioventricular block, particularly when the blood pressure is not adequately controlled. Diltiazem or verapamil is preferable in patients with relative tachycardia.
*The new T-channel types of calcium blockers possess minimal negative inotropic effect, produce no edema or constipation and are effective in the management of [[hypertension]] and [[angina|chronic angina]].  


==Adverse effects==
*In a given patient, the hemodynamic profile should be considered while choosing a particular calcium channel blocker.
*[[Peripheral edema]]
:*[[Dihydropyridines]] are preferable in the presence of [[sinus bradycardia]], sinus node dysfunction, or [[atrioventricular block]], particularly when the blood pressure is not adequately controlled.
*[[Palpitations]]
:*[[Diltiazem]] or [[verapamil]] is preferable in patients with relative [[tachycardia]].
*[[Constipation]]
 
*[[Flushing]]
==Contra-indication==
*[[Constipation]]
*A combination of [[Chronic stable angina treatment beta blockers|beta-blocker]] and [[diltiazem]] or [[dihydropyridine]] should be avoided in patients with [[EF|EF less than 40%]].
*Occasionally [[headache]]
 
*Concomitant use of [[verapamil]] with a [[Chronic stable angina treatment beta blockers|beta-blocker]] is considered unsafe as verapamil may cause conduction disturbances or worsen [[heart failure]].


*Worsening [[congestive heart failure]] and increased mortality has also been observed with [[diltiazem]] in post infarction patients with depressed left ventricular ejection fraction.
==Drug interaction==
*[[Chronic stable angina treatment clopidogrel|Clopidogrel]] is activated by CYP3A4, which also metabolizes dihydropyridines, thus co-administration of [[dihydropyridines]] is associated with decreased platelet inhibition by clopidogrel.<ref name="pmid19007592">Siller-Matula JM, Lang I, Christ G, Jilma B (2008) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=19007592 Calcium-channel blockers reduce the antiplatelet effect of clopidogrel.] ''J Am Coll Cardiol'' 52 (19):1557-63. [http://dx.doi.org/10.1016/j.jacc.2008.07.055 DOI:10.1016/j.jacc.2008.07.055] PMID: [http://pubmed.gov/19007592 19007592]</ref>


*With dihydropyridines, a reflex [[tachycardia]] may produce [[palpitation]].  
*Concomitant use of [[beta blockers]] and non-dihydropyridines such as [[verapamil]] and [[diltiazem]] cause the sinus node to slow down, thereby potentiating the effect of [[bradycardia]].  


*With diltiazem and verapamil, [[sinus bradycardia]] and different grades of [[atrioventricular blocks may occur]]. [[Verapamil]] may cause constipation.
==Adverse effects==
*CCBs particularly [[dihydropyridines]]-induced peripheral vasodilation causes:
:*[[Peripheral edema]]
:*[[Headache]]
:*[[Flushing]]
:*[[Palpitation]] ''(due to reflex tachycardia)''


*Although [[beta-blockers]] may be used in patients with [[EF]] <30%, the combination of a [[beta-blocker]] with [[diltiazem]] or [[dihydropyridine]] should be avoided in patients with [[EF]] <40%. [[Verapamil]] and, to a lesser extent, [[diltiazem]], when added to a [[beta-blocker]], may cause conduction disturbances or [[HF]], and the verapamil combination is considered unsafe.
*[[Verapamil]] may cause [[constipation]].


==Supportive trial data==
*In post-MI patients with reduced [[EF|left ventricular ejection fraction]], [[diltiazem]] causes worsening [[congestive heart failure]] and is associated with the increase risk of mortality.<ref name="pmid14615107">Turnbull F, Blood Pressure Lowering Treatment Trialists' Collaboration (2003) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=14615107 Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials.] ''Lancet'' 362 (9395):1527-35. PMID: [http://pubmed.gov/14615107 14615107]</ref><ref name="pmid12777939">Staessen JA, Wang JG, Thijs L (2003) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=12777939 Cardiovascular prevention and blood pressure reduction: a quantitative overview updated until 1 March 2003.] ''J Hypertens'' 21 (6):1055-76. [http://dx.doi.org/10.1097/01.hjh.0000059044.65882.db DOI:10.1097/01.hjh.0000059044.65882.db] PMID: [http://pubmed.gov/12777939 12777939]</ref><ref name="pmid12759325">Psaty BM, Lumley T, Furberg CD, Schellenbaum G, Pahor M, Alderman MH et al. (2003) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=12759325 Health outcomes associated with various antihypertensive therapies used as first-line agents: a network meta-analysis.] ''JAMA'' 289 (19):2534-44. [http://dx.doi.org/10.1001/jama.289.19.2534 DOI:10.1001/jama.289.19.2534] PMID: [http://pubmed.gov/12759325 12759325]</ref>
*Several trials have shown that [[verapamil]] is as effective as [[beta-blockers]] in the control of [[angina]], but this agent does not prolong life.  


*Calcium antagonists have also been postulated to have anti atherosclerotic properties. The Prospective Randomized Evaluation of the Vascular Effect of Norvasc Trial ('''PREVENT''') did demonstrate slowing of atherosclerotic progression in carotid but not in the coronary vasculatures. <ref name="pmid12356398">Mancini GB, Pitt B (2002) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=12356398 Coronary angiographic changes in patients with cardiac events in the Prospective Randomized Evaluation of the Vascular Effects of Norvasc Trial (PREVENT).] ''Am J Cardiol'' 90 (7):776-8. PMID: [http://pubmed.gov/12356398 12356398]</ref>
*[[Diltiazem]] and [[verapamil]] reduce myocardial contractility and hence can cause [[sinus bradycardia]] and different grades of [[atrioventricular blocks]].<ref name="pmid10351980">Gibbons RJ, Chatterjee K, Daley J, Douglas JS, Fihn SD, Gardin JM et al. (1999) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=10351980 ACC/AHA/ACP-ASIM guidelines for the management of patients with chronic stable angina: executive summary and recommendations. A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Patients with Chronic Stable Angina).] ''Circulation'' 99 (21):2829-48. [http://circ.ahajournals.org/content/99/21/2829.full.pdf] PMID: [http://pubmed.gov/10351980 10351980]</ref>  


*Given to patients prior to undergoing [[PTCA]], [[amlodipine]] was shown to reduce major cardiovascular end points (death, [[MI]], [[CABG]], repeat [[PCI]]) in the Coronary Angioplasty Amlodipine Restenosis Study ('''CAPARES'''). <ref name="pmid12796759">Jørgensen B, Thaulow E, Coronary Angioplasty Amlodipine Restenosis Study (2003) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=12796759 Effects of amlodipine on ischemia after percutaneous transluminal coronary angioplasty: secondary results of the Coronary Angioplasty Amlodipine Restenosis (CAPARES) Study.] ''Am Heart J'' 145 (6):1030-5. [http://dx.doi.org/10.1016/S0002-8703(03)00082-6 DOI:10.1016/S0002-8703(03)00082-6] PMID: [http://pubmed.gov/12796759 12796759]</ref>
*Vaso-selective [[dihydropyridines]] such as [[nifedipine]], [[amlodipine]], and [[felodipine]] may elicit short term increase in [[heart rate]], sympathetic counterregulation and renin release that subside over time. However, there is persistence of sympathetic activation signs even after months of treatment with a dihydropyridines.<ref name="pmid9049538">Hjemdahl P, Wallén NH (1997) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=9049538 Calcium antagonist treatment, sympathetic activity and platelet function.] ''Eur Heart J'' 18 Suppl A ():A36-50. PMID: [http://pubmed.gov/9049538 9049538]</ref>


==ACC/AHA Guidelines- Pharmacotherapy to Prevent MI and Death and Reduce Symptoms (DO NOT EDIT)<ref name="pmid10351980">Gibbons RJ, Chatterjee K, Daley J, Douglas JS, Fihn SD, Gardin JM et al. (1999)[http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=10351980ACC/AHA/ACP-ASIM guidelines for the management of patients with chronic stable angina: executive summary and recommendations. A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Patients with Chronic Stable Angina).]''Circulation'' 99 (21):2829-48. PMID: [http://pubmed.gov/10351980 10351980]</ref><ref name="pmid12515758">Gibbons RJ, Abrams J, Chatterjee K, Daley J, Deedwania PC, Douglas JS et al. (2003) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=12515758 ACC/AHA 2002 guideline update for the management of patients with chronic stable angina--summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients With Chronic Stable Angina).] ''Circulation'' 107 (1):149-58. PMID: [http://pubmed.gov/12515758 12515758]</ref>==
==ACC/AHA Guidelines- Pharmacotherapy to Prevent MI and Death and Reduce Symptoms (DO NOT EDIT)<ref name="pmid10351980">Gibbons RJ, Chatterjee K, Daley J, Douglas JS, Fihn SD, Gardin JM et al. (1999)[http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=10351980ACC/AHA/ACP-ASIM guidelines for the management of patients with chronic stable angina: executive summary and recommendations. A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Patients with Chronic Stable Angina).]''Circulation'' 99 (21):2829-48. PMID: [http://pubmed.gov/10351980 10351980]</ref><ref name="pmid12515758">Gibbons RJ, Abrams J, Chatterjee K, Daley J, Deedwania PC, Douglas JS et al. (2003) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=12515758 ACC/AHA 2002 guideline update for the management of patients with chronic stable angina--summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients With Chronic Stable Angina).] ''Circulation'' 107 (1):149-58. PMID: [http://pubmed.gov/12515758 12515758]</ref>==

Revision as of 03:34, 23 August 2011

Chronic stable angina Microchapters

Acute Coronary Syndrome Main Page

Home

Patient Information

Overview

Historical Perspective

Classification

Classic
Chronic Stable Angina
Atypical
Walk through Angina
Mixed Angina
Nocturnal Angina
Postprandial Angina
Cardiac Syndrome X
Vasospastic Angina

Differentiating Chronic Stable Angina from Acute Coronary Syndromes

Pathophysiology

Epidemiology and Demographics

Risk Stratification

Pretest Probability of CAD in a Patient with Angina

Prognosis

Diagnosis

History and Symptoms

Physical Examination

Test Selection Guideline for the Individual Basis

Laboratory Findings

Electrocardiogram

Exercise ECG

Chest X Ray

Myocardial Perfusion Scintigraphy with Pharmacologic Stress

Myocardial Perfusion Scintigraphy with Thallium

Echocardiography

Exercise Echocardiography

Computed coronary tomography angiography(CCTA)

Positron Emission Tomography

Ambulatory ST Segment Monitoring

Electron Beam Tomography

Cardiac Magnetic Resonance Imaging

Coronary Angiography

Treatment

Medical Therapy

Revascularization

PCI
CABG
Hybrid Coronary Revascularization

Alternative Therapies for Refractory Angina

Transmyocardial Revascularization (TMR)
Spinal Cord Stimulation (SCS)
Enhanced External Counter Pulsation (EECP)
ACC/AHA Guidelines for Alternative Therapies in patients with Refractory Angina

Discharge Care

Patient Follow-Up
Rehabilitation

Secondary Prevention

Guidelines for Asymptomatic Patients

Noninvasive Testing in Asymptomatic Patients
Risk Stratification by Coronary Angiography
Pharmacotherapy to Prevent MI and Death in Asymptomatic Patients

Landmark Trials

Case Studies

Case #1

Chronic stable angina treatment calcium channel blockers On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Chronic stable angina treatment calcium channel blockers

CDC onChronic stable angina treatment calcium channel blockers

Chronic stable angina treatment calcium channel blockers in the news

Blogs on Chronic stable angina treatment calcium channel blockers

to Hospitals Treating Chronic stable angina treatment calcium channel blockers

Risk calculators and risk factors for Chronic stable angina treatment calcium channel blockers

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [4] Phone:617-632-7753; Associate Editor(s)-In-Chief: Cafer Zorkun, M.D., Ph.D. [5]; John Fani Srour, M.D.; Jinhui Wu, M.D.; Lakshmi Gopalakrishnan, M.B.B.S.

Overview

Calcium channel blockers (CCBs) consist of three sub-classes, namely dihydropyridines (e.g., nifedipine), phenylalkylamines (e.g., verapamil) and modified benzothiazepines (e.g., diltiazem). The beneficial anti-anginal effects of CCB include reduction in the afterload consequent to systemic vasodilation as well as epicardial vessel vasodilation, enhancement of the coronary collateral flow with subsequent sub-endocardial perfusion due to the inhibition of calcium influx via L-type channels.[1] Long-acting calcium channel blockers[2] are an effective antianginal agent and are considered to be the first choice in post-MI patients with a contra-indication to beta-blocker and specifically to control symptoms in patients with vasospastic angina.[3] However, short-acting CCBs such as nifedipine are avoided due to an increased risk of myocardial infarction and mortality.[4][5][6]

Mechanisms of benefit

  • Calcium channel blockers reduce the trans-membrane flux of calcium via inhibition of slow calcium channels.
  • Dihydropyridines (e.g., nifedipine) exert a greater inhibitory effect on vascular smooth muscle than on the myocardium. Thus, major therapeutic effect are expected to be peripheral and coronary vasodilation.
  • Coronary vasodilation consequent to vasodilation of both conductance and resistance coronary vessels as well as enhancement of the coronary collateral flow subsequently results in sub-endocardial perfusion.
  • Peripheral vasodilation results in afterload reduction and subsequently results in reflex adrenergic activation, tachycardia and stimulation of the rennin-angiotensin system has been implicated as the mechanism for the potentially adverse cardiovascular effects.
  • Calcium channel blockers such as verapamil and diltiazem may decrease heart rate and is associated with a reduced myocardial oxygen consumption.

Indications

  • In patients with a contra-indication to beta blockers, the second drug of choice is CCB.
  • In patients with stable exertional angina, calcium channel blockers primarily decrease the myocardial oxygen consumption and hence improves exercise tolerance, reduce the time to onset of angina and ST segment depression during treadmill tests.
  • In patients with vasospastic angina, CCBs along with nitrates effectively relieve and prevent epicardial coronary artery spasm. Some patients may also require a combination of two calcium channel blockers to achieve efficacy.
  • The new T-channel types of calcium blockers possess minimal negative inotropic effect, produce no edema or constipation and are effective in the management of hypertension and chronic angina.
  • In a given patient, the hemodynamic profile should be considered while choosing a particular calcium channel blocker.

Contra-indication

Drug interaction

  • Clopidogrel is activated by CYP3A4, which also metabolizes dihydropyridines, thus co-administration of dihydropyridines is associated with decreased platelet inhibition by clopidogrel.[7]

Adverse effects

  • Vaso-selective dihydropyridines such as nifedipine, amlodipine, and felodipine may elicit short term increase in heart rate, sympathetic counterregulation and renin release that subside over time. However, there is persistence of sympathetic activation signs even after months of treatment with a dihydropyridines.[12]

ACC/AHA Guidelines- Pharmacotherapy to Prevent MI and Death and Reduce Symptoms (DO NOT EDIT)[11][1]

Class I

1. Calcium antagonists (short-acting dihydropyridine calcium antagonists should be avoided) and/or long-acting nitrates as initial therapy for reduction of symptoms when beta-blockers are contraindicated. (Level of Evidence: B)

2. Calcium antagonists (short-acting dihydropyridine calcium antagonists should be avoided) and/or long-acting nitrates in combination with beta-blockers when initial treatment with beta-blockers is not successful. (Level of Evidence: B)

3. Calcium antagonists (short-acting dihydropyridine calcium antagonists should be avoided) and/or long-acting nitrates as a substitute for beta-blockers if initial treatment with beta-blockers leads to unacceptable side effects. (Level of Evidence: C)

Class IIa

1. Long-acting non-dihydropyridine calcium antagonists (short-acting dihydropyridine calcium antagonists should be avoided) instead of beta-blockers as initial therapy. (Level of Evidence: B)

ESC Guidelines- Pharmacological therapy to improve symptoms and/or reduce ischaemia in patients with stable angina (DO NOT EDIT) [13]

Class I

1. In case of beta-blocker intolerance or poor efficacy attempt monotherapy with a calcium channel blocker (CCB) (Level of Evidence: A), long-acting nitrate (Level of Evidence: C), or nicorandil. (Level of Evidence: C)

2. If the effects of beta-blocker monotherapy are insufficient, add a dihydropyridine CCB. (Level of Evidence: B)

Class IIa

1. If CCB monotherapy or combination therapy CCB with beta-blocker) is unsuccessful, substitute the CCB with a long-acting nitrate or nicorandil. Be careful to avoid nitrate tolerance. (Level of Evidence: C)

Vote on and Suggest Revisions to the Current Guidelines

Sources

  • The ACC/AHA/ACP–ASIM Guidelines for the Management of Patients With Chronic Stable Angina [11]
  • TheACC/AHA 2002 Guideline Update for the Management of Patients With Chronic Stable Angina [1]
  • The 2007 Chronic Angina Focused Update of the ACC/AHA 2002 Guidelines for the Management of Patients With Chronic Stable Angina [14]
  • Guidelines on the management of stable angina pectoris: The Task Force on the Management of Stable Angina Pectoris of the European Society of Cardiology [13]

References

  1. 1.0 1.1 1.2 Gibbons RJ, Abrams J, Chatterjee K, Daley J, Deedwania PC, Douglas JS et al. (2003) ACC/AHA 2002 guideline update for the management of patients with chronic stable angina--summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients With Chronic Stable Angina). Circulation 107 (1):149-58.[1] PMID: 12515758
  2. Karlson BW, Emanuelsson H, Herlitz J, Nilsson JE, Olsson G (1991) Evaluation of the antianginal effect of nifedipine: influence of formulation dependent pharmacokinetics. Eur J Clin Pharmacol 40 (5):501-6. PMID: 1884725
  3. Waters D (1991) Proischemic complications of dihydropyridine calcium channel blockers. Circulation 84 (6):2598-600. PMID: 1959210
  4. Nissen SE, Tuzcu EM, Libby P, Thompson PD, Ghali M, Garza D et al. (2004) Effect of antihypertensive agents on cardiovascular events in patients with coronary disease and normal blood pressure: the CAMELOT study: a randomized controlled trial. JAMA 292 (18):2217-25. DOI:10.1001/jama.292.18.2217 PMID: 15536108
  5. Savonitto S, Ardissino D (1998) Selection of drug therapy in stable angina pectoris. Cardiovasc Drugs Ther 12 (2):197-210. PMID: 9652879
  6. Thadani U (1999) Treatment of stable angina. Curr Opin Cardiol 14 (4):349-58. PMID: 10448616
  7. Siller-Matula JM, Lang I, Christ G, Jilma B (2008) Calcium-channel blockers reduce the antiplatelet effect of clopidogrel. J Am Coll Cardiol 52 (19):1557-63. DOI:10.1016/j.jacc.2008.07.055 PMID: 19007592
  8. Turnbull F, Blood Pressure Lowering Treatment Trialists' Collaboration (2003) Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet 362 (9395):1527-35. PMID: 14615107
  9. Staessen JA, Wang JG, Thijs L (2003) Cardiovascular prevention and blood pressure reduction: a quantitative overview updated until 1 March 2003. J Hypertens 21 (6):1055-76. DOI:10.1097/01.hjh.0000059044.65882.db PMID: 12777939
  10. Psaty BM, Lumley T, Furberg CD, Schellenbaum G, Pahor M, Alderman MH et al. (2003) Health outcomes associated with various antihypertensive therapies used as first-line agents: a network meta-analysis. JAMA 289 (19):2534-44. DOI:10.1001/jama.289.19.2534 PMID: 12759325
  11. 11.0 11.1 11.2 Gibbons RJ, Chatterjee K, Daley J, Douglas JS, Fihn SD, Gardin JM et al. (1999) ACC/AHA/ACP-ASIM guidelines for the management of patients with chronic stable angina: executive summary and recommendations. A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Patients with Chronic Stable Angina). Circulation 99 (21):2829-48. [2] PMID: 10351980
  12. Hjemdahl P, Wallén NH (1997) Calcium antagonist treatment, sympathetic activity and platelet function. Eur Heart J 18 Suppl A ():A36-50. PMID: 9049538
  13. 13.0 13.1 Fox K, Garcia MA, Ardissino D, Buszman P, Camici PG, Crea F; et al. (2006). "Guidelines on the management of stable angina pectoris: executive summary: The Task Force on the Management of Stable Angina Pectoris of the European Society of Cardiology". Eur Heart J. 27 (11): 1341–81. doi:10.1093/eurheartj/ehl001. PMID 16735367.
  14. Fraker TD, Fihn SD, Gibbons RJ, Abrams J, Chatterjee K, Daley J et al. (2007)2007 chronic angina focused update of the ACC/AHA 2002 Guidelines for the management of patients with chronic stable angina: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines Writing Group to develop the focused update of the 2002 Guidelines for the management of patients with chronic stable angina. Circulation 116 (23):2762-72.[3] PMID: 17998462


Template:WikiDoc Sources