Chronic stable angina treatment calcium channel blockers: Difference between revisions
Line 64: | Line 64: | ||
==Supportive trial data== | ==Supportive trial data== | ||
*'''Meta-analysis''' that reviewed 60 randomized controlled trials | *'''Meta-analysis''' that reviewed 60 randomized controlled trials to compare the cardiovascular event rates in patients with stable angina receiving nifedipine as monotherapy or combination therapy and in active drug controls. The primary endpoint from all major cardiovascular events such as death, non-fatal [[myocardial infarction]], [[stroke]] and revascularization procedure plus increased angina between the two groups was 1.61 (95% CI, 0.91 to 2.87). Therefore, the study concluded that [[nifedipine]] was safe in the management of chronic stable angina.<ref name="pmid9931077">Stason WB, Schmid CH, Niedzwiecki D, Whiting GW, Caubet JF, Cory D et al. (1999) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=9931077 Safety of nifedipine in angina pectoris: a meta-analysis.] ''Hypertension'' 33 (1):24-31. PMID: [http://pubmed.gov/9931077 9931077]</ref> | ||
*'''Meta-analysis''' that reviewed 72 randomized trials to compare the efficacy of treatment with [[calcium channel blocker]], [[Chronic stable angina treatment beta blockers|beta-blocker]] and [[Chronic stable angina treatment nitrates|long-acting nitrate]] therapy for patients with stable angina. The primary endpoint from all major cardiovascular events did not significantly differ between the beta-blocker and calcium channel blocker groups ''(OR 0.97; 95% CI, 0.67-1.38; P=0.79)''; however, differences between beta-blockers and calcium channel blockers were most striking with the [[Chronic stable angina treatment nitrates|nifedipine]] group ''(OR for adverse events with beta-blockers vs nifedipine 0.60; 95% CI, 0.47-0.77)''. Thus, the study concluded similar outcomes with both [[Chronic stable angina treatment beta blockers|beta-blocker]] and [[calcium channel blocker]] classes with a limitation being only 8-weeks of follow-up.<ref name="pmid10362225">Gibbons RJ, Chatterjee K, Daley J, Douglas JS, Fihn SD, Gardin JM et al. (1999) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=10362225 ACC/AHA/ACP-ASIM guidelines for the management of patients with chronic stable angina: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Patients With Chronic Stable Angina).] ''J Am Coll Cardiol'' 33 (7):2092-197. PMID: [http://pubmed.gov/10362225 10362225]</ref> | |||
*DAVIT trial and its sub study- MDPIT trail reported the benefits of [[verapamil]] and [[diltiazem]] in improving the prognosis of [[MI|post-MI]] patients. | *DAVIT trial and its sub study- MDPIT trail reported the benefits of [[verapamil]] and [[diltiazem]] in improving the prognosis of [[MI|post-MI]] patients. |
Revision as of 14:15, 23 August 2011
Chronic stable angina Microchapters | ||
Classification | ||
---|---|---|
| ||
| ||
Differentiating Chronic Stable Angina from Acute Coronary Syndromes | ||
Diagnosis | ||
Alternative Therapies for Refractory Angina | ||
Discharge Care | ||
Guidelines for Asymptomatic Patients | ||
Case Studies | ||
Chronic stable angina treatment calcium channel blockers On the Web | ||
FDA on Chronic stable angina treatment calcium channel blockers | ||
CDC onChronic stable angina treatment calcium channel blockers | ||
Chronic stable angina treatment calcium channel blockers in the news | ||
Blogs on Chronic stable angina treatment calcium channel blockers | ||
to Hospitals Treating Chronic stable angina treatment calcium channel blockers | ||
Risk calculators and risk factors for Chronic stable angina treatment calcium channel blockers | ||
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [4] Phone:617-632-7753; Associate Editor(s)-In-Chief: Cafer Zorkun, M.D., Ph.D. [5]; John Fani Srour, M.D.; Jinhui Wu, M.D.; Lakshmi Gopalakrishnan, M.B.B.S.
Overview
Calcium channel blockers (CCBs) consist of three sub-classes, namely dihydropyridines (e.g., nifedipine), phenylalkylamines (e.g., verapamil) and modified benzothiazepines (e.g., diltiazem). The beneficial anti-anginal effects of CCB include reduction in the afterload consequent to systemic vasodilation as well as epicardial vessel vasodilation, enhancement of the coronary collateral flow with subsequent sub-endocardial perfusion due to the inhibition of calcium influx via L-type channels.[1] Long-acting calcium channel blockers [2] are an effective antianginal agent and are considered to be the first choice in post-MI patients with a contra-indication to beta-blocker and specifically to control symptoms in patients with vasospastic angina.[3] However, short-acting CCBs such as nifedipine are avoided due to an increased risk of myocardial infarction and mortality.[4] [5] [6]
Mechanisms of benefit
- Calcium channel blockers reduce the trans-membrane flux of calcium via inhibition of slow calcium channels.
- Dihydropyridines (e.g., nifedipine) exert a greater inhibitory effect on vascular smooth muscle than on the myocardium. Thus, major therapeutic effect are expected to be peripheral and coronary vasodilation.
- Coronary vasodilation consequent to vasodilation of both conductance and resistance coronary vessels as well as enhancement of the coronary collateral flow subsequently results in sub-endocardial perfusion.
- Peripheral vasodilation results in afterload reduction and subsequently results in reflex adrenergic activation, tachycardia and stimulation of the rennin-angiotensin system has been implicated as the mechanism for the potentially adverse cardiovascular effects.
- Dihydropyridines also exert a negative inotropic effect and therefore can produce myocardial depression, which is less pronounced with amlodipine and nisoldipine.
- Calcium channel blockers such as verapamil and diltiazem may decrease heart rate and is associated with a reduced myocardial oxygen consumption.
- Second generation vasoselective dihydropyridines such as amlodipine and felodipine, are well tolerated by patients with left ventricular dysfunction and no increase in the risk of mortality has been described. Furthermore, vasoselective long acting dihydropyridines such as amlodipine, extended release nifedipine, slow release verapamil and diltiazem have all been shown to reduce frequency and symptoms of angina.
- Calcium channel blockers have also been postulated to have anti atherosclerotic properties.[7]
Indications
- In patients with a contra-indication to beta blockers, the second drug of choice is CCB.
- In patients with ejection fraction more than 35%, amlodipine can be combined with a beta blocker as it offers minimal negative inotropic effects.
- In patients with stable exertional angina, calcium channel blockers primarily decrease the myocardial oxygen consumption and hence improves exercise tolerance, reduce the time to onset of angina and ST segment depression during treadmill tests.
- In patients with vasospastic angina, CCBs along with nitrates effectively relieve and prevent epicardial coronary artery spasm. Some patients may also require a combination of two calcium channel blockers to achieve efficacy.
- In patients with mixed angina, walk through, postprandial, and late nocturnal angina, an increase in the coronary vascular tone appears to be the contributing factor for the pathogenesis of ischemia. The above mentioned types of angina benefit with the use of calcium channel blockers, particularly when nitrate therapy alone is inadequate.
- The new T-channel types of calcium blockers possess minimal negative inotropic effect, produce no edema or constipation and are effective in the management of hypertension and chronic angina.
- In a given patient, the hemodynamic profile should be considered while choosing a particular calcium channel blocker.
- Dihydropyridines are preferable in the presence of sinus bradycardia, sinus node dysfunction, or atrioventricular block, particularly when the blood pressure is not adequately controlled.
- Diltiazem or verapamil is preferable in patients with relative tachycardia.
Contra-indications
- A combination of beta-blocker and diltiazem or dihydropyridine should be avoided in patients with EF less than 40%.
- Concomitant use of verapamil with a beta-blocker is considered unsafe as verapamil may cause conduction disturbances or worsen heart failure.
Drug interactions
- Clopidogrel is activated by CYP3A4, which also metabolizes dihydropyridines, thus co-administration of dihydropyridines is associated with decreased platelet inhibition by clopidogrel.[8]
- Concomitant use of beta blockers and non-dihydropyridines such as verapamil and diltiazem cause the sinus node to slow down, thereby potentiating the effect of bradycardia.
Adverse effects
- CCBs particularly dihydropyridines-induced peripheral vasodilation causes:
- Peripheral edema
- Headache
- Flushing
- Palpitation (due to reflex tachycardia)
- Verapamil may cause constipation.
- In post-MI patients with reduced left ventricular ejection fraction, diltiazem causes worsening congestive heart failure and is associated with the increase risk of mortality.[9] [10] [11]
- Diltiazem and verapamil reduce myocardial contractility and hence can cause sinus bradycardia and different grades of atrioventricular blocks.[12]
- Vaso-selective dihydropyridines such as nifedipine, amlodipine, and felodipine may elicit short term increase in heart rate, sympathetic counterregulation and renin release that subside over time. However, there is persistence of sympathetic activation signs even after months of treatment with a dihydropyridines.[13]
Supportive trial data
- Meta-analysis that reviewed 60 randomized controlled trials to compare the cardiovascular event rates in patients with stable angina receiving nifedipine as monotherapy or combination therapy and in active drug controls. The primary endpoint from all major cardiovascular events such as death, non-fatal myocardial infarction, stroke and revascularization procedure plus increased angina between the two groups was 1.61 (95% CI, 0.91 to 2.87). Therefore, the study concluded that nifedipine was safe in the management of chronic stable angina.[14]
- Meta-analysis that reviewed 72 randomized trials to compare the efficacy of treatment with calcium channel blocker, beta-blocker and long-acting nitrate therapy for patients with stable angina. The primary endpoint from all major cardiovascular events did not significantly differ between the beta-blocker and calcium channel blocker groups (OR 0.97; 95% CI, 0.67-1.38; P=0.79); however, differences between beta-blockers and calcium channel blockers were most striking with the nifedipine group (OR for adverse events with beta-blockers vs nifedipine 0.60; 95% CI, 0.47-0.77). Thus, the study concluded similar outcomes with both beta-blocker and calcium channel blocker classes with a limitation being only 8-weeks of follow-up.[15]
- DAVIT trial and its sub study- MDPIT trail reported the benefits of verapamil and diltiazem in improving the prognosis of post-MI patients.
- In the DAVIT trial,[16] 897 post-MI patients were randomized to either verapamil or placebo. The 18-month mortality rates were 11.1 and 13.8% (p=0.11) and the major event rates 18.0 and 21.6% (p=0.03) between the verapamil and placebo groups respectively. The study concluded that long-term therapy with verapamil in post-MI was beneficial as verapamil was associated with significant reduction in major events, and the positive effect was found in patients without heart failure.
- In the MDPIT study,[17] 2466 patients with previous infarction were randomized to either diltiazem or placebo. The primary endpoint of all cause mortality or non-fatal MI during a mean follow-up of 2 years (range 1 to 4.3 years) reported a 11% fewer recurrent cardiac events in the diltiazem group than in the placebo group (202 vs. 226; Cox hazard ratio, 0.90; 95 percent confidence limits, 0.74 and 1.08). Thus the study concluded that diltiazem exerted no overall effect on mortality or cardiac events in patients with previous infarction.
ACC/AHA Guidelines- Pharmacotherapy to Prevent MI and Death and Reduce Symptoms (DO NOT EDIT)[1] [12]
“ |
Class I1. Calcium antagonists (short-acting dihydropyridine calcium antagonists should be avoided) and/or long-acting nitrates as initial therapy for reduction of symptoms when beta-blockers are contraindicated. (Level of Evidence: B) 2. Calcium antagonists (short-acting dihydropyridine calcium antagonists should be avoided) and/or long-acting nitrates in combination with beta-blockers when initial treatment with beta-blockers is not successful. (Level of Evidence: B) 3. Calcium antagonists (short-acting dihydropyridine calcium antagonists should be avoided) and/or long-acting nitrates as a substitute for beta-blockers if initial treatment with beta-blockers leads to unacceptable side effects. (Level of Evidence: C) Class IIa1. Long-acting non-dihydropyridine calcium antagonists (short-acting dihydropyridine calcium antagonists should be avoided) instead of beta-blockers as initial therapy. (Level of Evidence: B) |
” |
ESC Guidelines- Pharmacological therapy to improve symptoms and/or reduce ischaemia in patients with stable angina (DO NOT EDIT) [18]
“ |
Class I1. In case of beta-blocker intolerance or poor efficacy attempt monotherapy with a calcium channel blocker (CCB) (Level of Evidence: A), long-acting nitrate (Level of Evidence: C), or nicorandil. (Level of Evidence: C) 2. If the effects of beta-blocker monotherapy are insufficient, add a dihydropyridine CCB. (Level of Evidence: B) Class IIa1. If CCB monotherapy or combination therapy CCB with beta-blocker) is unsuccessful, substitute the CCB with a long-acting nitrate or nicorandil. Be careful to avoid nitrate tolerance. (Level of Evidence: C) |
” |
Vote on and Suggest Revisions to the Current Guidelines
Sources
- TheACC/AHA 2002 Guideline Update for the Management of Patients With Chronic Stable Angina [1]
- The ACC/AHA/ACP–ASIM Guidelines for the Management of Patients With Chronic Stable Angina [12]
- The 2007 Chronic Angina Focused Update of the ACC/AHA 2002 Guidelines for the Management of Patients With Chronic Stable Angina [19]
- Guidelines on the management of stable angina pectoris: The Task Force on the Management of Stable Angina Pectoris of the European Society of Cardiology [18]
References
- ↑ 1.0 1.1 1.2 Gibbons RJ, Abrams J, Chatterjee K, Daley J, Deedwania PC, Douglas JS et al. (2003) ACC/AHA 2002 guideline update for the management of patients with chronic stable angina--summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients With Chronic Stable Angina). Circulation 107 (1):149-58.[1] PMID: 12515758
- ↑ Karlson BW, Emanuelsson H, Herlitz J, Nilsson JE, Olsson G (1991) Evaluation of the antianginal effect of nifedipine: influence of formulation dependent pharmacokinetics. Eur J Clin Pharmacol 40 (5):501-6. PMID: 1884725
- ↑ Waters D (1991) Proischemic complications of dihydropyridine calcium channel blockers. Circulation 84 (6):2598-600. PMID: 1959210
- ↑ Nissen SE, Tuzcu EM, Libby P, Thompson PD, Ghali M, Garza D et al. (2004) Effect of antihypertensive agents on cardiovascular events in patients with coronary disease and normal blood pressure: the CAMELOT study: a randomized controlled trial. JAMA 292 (18):2217-25. DOI:10.1001/jama.292.18.2217 PMID: 15536108
- ↑ Savonitto S, Ardissino D (1998) Selection of drug therapy in stable angina pectoris. Cardiovasc Drugs Ther 12 (2):197-210. PMID: 9652879
- ↑ Thadani U (1999) Treatment of stable angina. Curr Opin Cardiol 14 (4):349-58. PMID: 10448616
- ↑ Mancini GB, Pitt B (2002) Coronary angiographic changes in patients with cardiac events in the Prospective Randomized Evaluation of the Vascular Effects of Norvasc Trial (PREVENT). Am J Cardiol 90 (7):776-8. PMID: 12356398
- ↑ Siller-Matula JM, Lang I, Christ G, Jilma B (2008) Calcium-channel blockers reduce the antiplatelet effect of clopidogrel. J Am Coll Cardiol 52 (19):1557-63. DOI:10.1016/j.jacc.2008.07.055 PMID: 19007592
- ↑ Turnbull F, Blood Pressure Lowering Treatment Trialists' Collaboration (2003) Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet 362 (9395):1527-35. PMID: 14615107
- ↑ Staessen JA, Wang JG, Thijs L (2003) Cardiovascular prevention and blood pressure reduction: a quantitative overview updated until 1 March 2003. J Hypertens 21 (6):1055-76. DOI:10.1097/01.hjh.0000059044.65882.db PMID: 12777939
- ↑ Psaty BM, Lumley T, Furberg CD, Schellenbaum G, Pahor M, Alderman MH et al. (2003) Health outcomes associated with various antihypertensive therapies used as first-line agents: a network meta-analysis. JAMA 289 (19):2534-44. DOI:10.1001/jama.289.19.2534 PMID: 12759325
- ↑ 12.0 12.1 12.2 Gibbons RJ, Chatterjee K, Daley J, Douglas JS, Fihn SD, Gardin JM et al. (1999) ACC/AHA/ACP-ASIM guidelines for the management of patients with chronic stable angina: executive summary and recommendations. A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Patients with Chronic Stable Angina). Circulation 99 (21):2829-48. [2] PMID: 10351980
- ↑ Hjemdahl P, Wallén NH (1997) Calcium antagonist treatment, sympathetic activity and platelet function. Eur Heart J 18 Suppl A ():A36-50. PMID: 9049538
- ↑ Stason WB, Schmid CH, Niedzwiecki D, Whiting GW, Caubet JF, Cory D et al. (1999) Safety of nifedipine in angina pectoris: a meta-analysis. Hypertension 33 (1):24-31. PMID: 9931077
- ↑ Gibbons RJ, Chatterjee K, Daley J, Douglas JS, Fihn SD, Gardin JM et al. (1999) ACC/AHA/ACP-ASIM guidelines for the management of patients with chronic stable angina: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Patients With Chronic Stable Angina). J Am Coll Cardiol 33 (7):2092-197. PMID: 10362225
- ↑ (1990) Effect of verapamil on mortality and major events after acute myocardial infarction (the Danish Verapamil Infarction Trial II--DAVIT II) Am J Cardiol 66 (10):779-85. PMID: 2220572
- ↑ (1988) The effect of diltiazem on mortality and reinfarction after myocardial infarction. The Multicenter Diltiazem Postinfarction Trial Research Group. N Engl J Med 319 (7):385-92. DOI:10.1056/NEJM198808183190701 PMID: 2899840
- ↑ 18.0 18.1 Fox K, Garcia MA, Ardissino D, Buszman P, Camici PG, Crea F; et al. (2006). "Guidelines on the management of stable angina pectoris: executive summary: The Task Force on the Management of Stable Angina Pectoris of the European Society of Cardiology". Eur Heart J. 27 (11): 1341–81. doi:10.1093/eurheartj/ehl001. PMID 16735367.
- ↑ Fraker TD, Fihn SD, Gibbons RJ, Abrams J, Chatterjee K, Daley J et al. (2007)2007 chronic angina focused update of the ACC/AHA 2002 Guidelines for the management of patients with chronic stable angina: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines Writing Group to develop the focused update of the 2002 Guidelines for the management of patients with chronic stable angina. Circulation 116 (23):2762-72.[3] PMID: 17998462