Myelodysplastic syndrome medical therapy: Difference between revisions

Jump to navigation Jump to search
Varun Kumar (talk | contribs)
Created page with "{{Myelodysplastic syndrome}} {{CMG}} ==Overview== ==References== {{reflist|2}} Category:Disease Category:Types of cancer Category:Oncology [[Category:Hematolo..."
 
Varun Kumar (talk | contribs)
Line 3: Line 3:


==Overview==
==Overview==
==Medical therapy==
The goals of therapy are to control symptoms, improve quality of life, improve overall survival, and decrease progression to [[acute myelogenous leukemia]].
The IPSS scoring system can help triage patients for more aggressive treatment (i.e. [[bone marrow transplant]]) as well as help determine the best  timing of this therapy.<ref>{{cite journal | author=Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G, Sanz M, Vallespi T, Hamblin T, Oscier D, Ohyshiki K, Toyama K, Aul C, Hufti G, Bennett J | volume=89 | issue=6 | id=PMID 9058730}}</ref> <ref>{{cite journal | author=Cutler CS, Lee SJ, Greenberg P, Deeg HJ, Perez WS, Anasetti C, Bolwell BJ, Cairo MS, Gale RP, Klein JP, Lazarus HM, Liesveld JL, McCarthy PL, Milone GA, Rizzo JD, Schultz KR, Trigg ME, Keating A, Weisdorf DJ, Antin JH, Horowitz MM | title=A decision analysis of allogeneic bone marrow transplantation for the myelodysplastic syndromes: delayed transplantation for low-risk myelodysplasia is associated with improved outcome. | journal=Blood | year=2004 | pages=579-85 | volume=104 | issue=2  | id=PMID 15039286}}</ref>  Supportive care with blood product support and hematopoeitic growth factors (e.g. [[erythropoietin]]) is the mainstay of therapy.  The regulatory environment for the use of [[erythropoietin]]s is evolving, according to a recent [[Medicare (United States)|US Medicare]] National Coverage Determination.  No comment on the use of hematopoeitic growth factors for MDS was made in that document.<ref>{{cite web |url=http://www.cms.hhs.gov/mcd/viewdecisionmemo.asp?id=203 |title=Centers for Medicare & Medicaid Services |accessdate=2007-10-29 |format= |work=}}</ref>
The IPSS uses 3 criteria; cytogenetic abnormalities, proportion of bone marrow myeloblasts and number of cytopenias.  Points are assigned to these variables and are added to create 4 risk groups; low, intermediate 1, intermediate 2 and high risk.  If patients have >10% blasts in their bone marrow by morphology they are automatically classified as having higher risk MDS.  Patients with chromosome 7 abnormalities, loss of chromosome 7 or complex cytogenetics typically have high-risk MDS.  A major limitation of the IPSS is that it does not distinguish  between patients with severe and modest degrees of cytopenias; this may influence outcome. 
Survival and AML evolution score
{|  class="wikitable"
|-
! Prognostic Variable
! 0
! 0.5
! 1
! 1.5
! 2     
|-               
| Bone marrow blasts (%)     
| <5                 
| 5-10                 
| X                   
| 11-20                 
| 21-30
|-
| Karyotype *               
| good               
| intermediate         
| poor               
| X                     
| X
|-
| Cytopenias **             
| 0 or 1             
| 2 or 3               
| X                   
| X                     
| X
|}
*Good = normal or any 1 of the following; deletion Y, deletion 5q, deletion 20q.
Intermediate = other abnormalities.
Poor = complex (>/= 3 abnormalities) or chromosome 7 abnormalities.
** Hemoglobin < 10 g/dl, ANC<1800 /uL, Platelets <100,000. 
{|  class="wikitable"
|-
! IPSS Risk Category
! Low                 
! Intermediate 1                   
! Intermediate 2                     
! High
|-
| Combined score             
| 0                   
| 0.5-1                           
| 1.5-2                             
| >/=2.5
|-
| AML evolution             
| 19%                 
| 30%                             
| 33%                               
| 45%
|-
| Median time to AML (years) 
| 9.4                 
| 3.3                             
| 1.1                               
| 0.2
|-
| Median survival (years)   
| 5.7                 
| 3.5                             
| 1.2                               
| 0.4
|}
Lower risk disease includes those classified as low or intermediate 1 with a combined IPSS score of 1 or lower.  For these patients observation and supportive care only has been advocated.  (However, once blood transfusions are required then some form of treatment should be considered.) 
Since 2004 3 medications have been approved for MDS; 5-azacytidine and decitabine are hypomethylating agents, lenalidomide is immunomodulatory.  Lenalidomide is especially useful in the treatment of 5q minus syndrome; for these patients the medication not only improves counts but it also has a high complete response rate in the bone marrow and a high remission rate for the chromosome.  For non-5q deletion, low-risk MDS patients treatment options include lenalidomide and demethylating agents. 
DNA-methyltransferase inhibitors; normally methylation of cytosine in gene promoters causes them to become silent; they would otherwise cause terminal differentiation.  There is survival benefit with the hypomethylating agents (Decitabine & Azacitadine)in higher-risk disease (intermediate-2 or high risk disease).Azacitidine and Decitabine are different chemically and patients whose disease doesn't respond or becomes refractory to one may respond to the other.  The recommendation is to proceed until progression; sometimes stopping allows the disease to relapse or it relapses as it is resistant disease.  The major toxicities are nausea, vomiting, diarrhea, cytopenias and fatigue. 
<ref name="pmid10694544">{{cite journal |author=Wijermans P, Lübbert M, Verhoef G, ''et al'' |title=Low-dose 5-aza-2'-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients |journal=J. Clin. Oncol. |volume=18 |issue=5 |pages=956–62 |year=2000 |pmid=10694544 |doi=}}</ref><ref name="pmid11529854">{{cite journal |author=Lübbert M, Wijermans P, Kunzmann R, ''et al'' |title=Cytogenetic responses in high-risk myelodysplastic syndrome following low-dose treatment with the DNA methylation inhibitor 5-aza-2'-deoxycytidine |journal=Br. J. Haematol. |volume=114 |issue=2 |pages=349–57 |year=2001 |pmid=11529854 |doi=}}</ref><ref name="pmid12011120">{{cite journal |author=Silverman LR, Demakos EP, Peterson BL, ''et al'' |title=Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B |journal=J. Clin. Oncol. |volume=20 |issue=10 |pages=2429–40 |year=2002 |pmid=12011120 |doi=}}</ref><ref name="pmid16921040">{{cite journal |author=Silverman LR, McKenzie DR, Peterson BL, ''et al'' |title=Further analysis of trials with azacitidine in patients with myelodysplastic syndrome: studies 8421, 8921, and 9221 by the Cancer and Leukemia Group B |journal=J. Clin. Oncol. |volume=24 |issue=24 |pages=3895–903 |year=2006 |pmid=16921040 |doi=10.1200/JCO.2005.05.4346}}</ref>
<ref name="pmid17133405">{{cite journal |author=Kantarjian HM, O'Brien S, Shan J, ''et al'' |title=Update of the decitabine experience in higher risk myelodysplastic syndrome and analysis of prognostic factors associated with outcome |journal=Cancer |volume=109 |issue=2 |pages=265–73 |year=2007 |pmid=17133405 |doi=10.1002/cncr.22376}}</ref><ref name="pmid16532500">{{cite journal |author=Kantarjian H, Issa JP, Rosenfeld CS, ''et al'' |title=Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study |journal=Cancer |volume=106 |issue=8 |pages=1794–803 |year=2006 |pmid=16532500 |doi=10.1002/cncr.21792}}</ref><ref name="pmid16882708">{{cite journal |author=Kantarjian H, Oki Y, Garcia-Manero G, ''et al'' |title=Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia |journal=Blood |volume=109 |issue=1 |pages=52–7 |year=2007 |pmid=16882708 |doi=10.1182/blood-2006-05-021162}}</ref><ref name="pmid17679729">{{cite journal |author=Blum W, Klisovic RB, Hackanson B, ''et al'' |title=Phase I study of decitabine alone or in combination with valproic acid in acute myeloid leukemia |journal=J. Clin. Oncol. |volume=25 |issue=25 |pages=3884–91 |year=2007 |pmid=17679729 |doi=10.1200/JCO.2006.09.4169}}</ref>
IMiDS, such as Lenalidomide are for erythroid failure such as in transfusion-dependent del(5q).  The response rate (~67%)is independent of the karyoptype.  Treatment can give a positive cytopgenetic response, the patient becomes transfusion-free and would no longer require Erythropoietin.  With treatment there is a transient decrease in the leukocytes and platelets. It has been known to be useful in paients without the 5q deletion with ~25% of patients experiencing a significant response in hemoglobin levels.
<ref name="pmid17021321">{{cite journal |author=List A, Dewald G, Bennett J, ''et al'' |title=Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion |journal=N. Engl. J. Med. |volume=355 |issue=14 |pages=1456–65 |year=2006 |pmid=17021321 |doi=10.1056/NEJMoa061292}}</ref>
<ref name="pmid16625140">{{cite journal |author= |title=Lenalidomide (Revlimid) for anemia of myelodysplastic syndrome |journal=The Medical letter on drugs and therapeutics |volume=48 |issue=1232 |pages=31–2 |year=2006 |pmid=16625140 |doi=}}</ref>.


==References==
==References==

Revision as of 19:27, 22 January 2012

Myelodysplastic syndrome Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Myelodysplastic syndrome from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

Echocardiography and Ultrasound

CT

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Myelodysplastic syndrome medical therapy On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Myelodysplastic syndrome medical therapy

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Myelodysplastic syndrome medical therapy

CDC on Myelodysplastic syndrome medical therapy

Myelodysplastic syndrome medical therapy in the news

Blogs on Myelodysplastic syndrome medical therapy

Directions to Hospitals Treating Myelodysplastic syndrome

Risk calculators and risk factors for Myelodysplastic syndrome medical therapy

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Overview

Medical therapy

The goals of therapy are to control symptoms, improve quality of life, improve overall survival, and decrease progression to acute myelogenous leukemia.

The IPSS scoring system can help triage patients for more aggressive treatment (i.e. bone marrow transplant) as well as help determine the best timing of this therapy.[1] [2] Supportive care with blood product support and hematopoeitic growth factors (e.g. erythropoietin) is the mainstay of therapy. The regulatory environment for the use of erythropoietins is evolving, according to a recent US Medicare National Coverage Determination. No comment on the use of hematopoeitic growth factors for MDS was made in that document.[3]

The IPSS uses 3 criteria; cytogenetic abnormalities, proportion of bone marrow myeloblasts and number of cytopenias. Points are assigned to these variables and are added to create 4 risk groups; low, intermediate 1, intermediate 2 and high risk. If patients have >10% blasts in their bone marrow by morphology they are automatically classified as having higher risk MDS. Patients with chromosome 7 abnormalities, loss of chromosome 7 or complex cytogenetics typically have high-risk MDS. A major limitation of the IPSS is that it does not distinguish between patients with severe and modest degrees of cytopenias; this may influence outcome.

Survival and AML evolution score

Prognostic Variable 0 0.5 1 1.5 2
Bone marrow blasts (%) <5 5-10 X 11-20 21-30
Karyotype * good intermediate poor X X
Cytopenias ** 0 or 1 2 or 3 X X X
  • Good = normal or any 1 of the following; deletion Y, deletion 5q, deletion 20q.

Intermediate = other abnormalities. Poor = complex (>/= 3 abnormalities) or chromosome 7 abnormalities.

    • Hemoglobin < 10 g/dl, ANC<1800 /uL, Platelets <100,000.


IPSS Risk Category Low Intermediate 1 Intermediate 2 High
Combined score 0 0.5-1 1.5-2 >/=2.5
AML evolution 19% 30% 33% 45%
Median time to AML (years) 9.4 3.3 1.1 0.2
Median survival (years) 5.7 3.5 1.2 0.4

Lower risk disease includes those classified as low or intermediate 1 with a combined IPSS score of 1 or lower. For these patients observation and supportive care only has been advocated. (However, once blood transfusions are required then some form of treatment should be considered.)

Since 2004 3 medications have been approved for MDS; 5-azacytidine and decitabine are hypomethylating agents, lenalidomide is immunomodulatory. Lenalidomide is especially useful in the treatment of 5q minus syndrome; for these patients the medication not only improves counts but it also has a high complete response rate in the bone marrow and a high remission rate for the chromosome. For non-5q deletion, low-risk MDS patients treatment options include lenalidomide and demethylating agents.

DNA-methyltransferase inhibitors; normally methylation of cytosine in gene promoters causes them to become silent; they would otherwise cause terminal differentiation. There is survival benefit with the hypomethylating agents (Decitabine & Azacitadine)in higher-risk disease (intermediate-2 or high risk disease).Azacitidine and Decitabine are different chemically and patients whose disease doesn't respond or becomes refractory to one may respond to the other. The recommendation is to proceed until progression; sometimes stopping allows the disease to relapse or it relapses as it is resistant disease. The major toxicities are nausea, vomiting, diarrhea, cytopenias and fatigue. [4][5][6][7] [8][9][10][11]

IMiDS, such as Lenalidomide are for erythroid failure such as in transfusion-dependent del(5q). The response rate (~67%)is independent of the karyoptype. Treatment can give a positive cytopgenetic response, the patient becomes transfusion-free and would no longer require Erythropoietin. With treatment there is a transient decrease in the leukocytes and platelets. It has been known to be useful in paients without the 5q deletion with ~25% of patients experiencing a significant response in hemoglobin levels. [12] [13].

References

  1. Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G, Sanz M, Vallespi T, Hamblin T, Oscier D, Ohyshiki K, Toyama K, Aul C, Hufti G, Bennett J. 89 (6). PMID 9058730. Missing or empty |title= (help)
  2. Cutler CS, Lee SJ, Greenberg P, Deeg HJ, Perez WS, Anasetti C, Bolwell BJ, Cairo MS, Gale RP, Klein JP, Lazarus HM, Liesveld JL, McCarthy PL, Milone GA, Rizzo JD, Schultz KR, Trigg ME, Keating A, Weisdorf DJ, Antin JH, Horowitz MM (2004). "A decision analysis of allogeneic bone marrow transplantation for the myelodysplastic syndromes: delayed transplantation for low-risk myelodysplasia is associated with improved outcome". Blood. 104 (2): 579–85. PMID 15039286.
  3. "Centers for Medicare & Medicaid Services". Retrieved 2007-10-29.
  4. Wijermans P, Lübbert M, Verhoef G; et al. (2000). "Low-dose 5-aza-2'-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients". J. Clin. Oncol. 18 (5): 956–62. PMID 10694544.
  5. Lübbert M, Wijermans P, Kunzmann R; et al. (2001). "Cytogenetic responses in high-risk myelodysplastic syndrome following low-dose treatment with the DNA methylation inhibitor 5-aza-2'-deoxycytidine". Br. J. Haematol. 114 (2): 349–57. PMID 11529854.
  6. Silverman LR, Demakos EP, Peterson BL; et al. (2002). "Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B". J. Clin. Oncol. 20 (10): 2429–40. PMID 12011120.
  7. Silverman LR, McKenzie DR, Peterson BL; et al. (2006). "Further analysis of trials with azacitidine in patients with myelodysplastic syndrome: studies 8421, 8921, and 9221 by the Cancer and Leukemia Group B". J. Clin. Oncol. 24 (24): 3895–903. doi:10.1200/JCO.2005.05.4346. PMID 16921040.
  8. Kantarjian HM, O'Brien S, Shan J; et al. (2007). "Update of the decitabine experience in higher risk myelodysplastic syndrome and analysis of prognostic factors associated with outcome". Cancer. 109 (2): 265–73. doi:10.1002/cncr.22376. PMID 17133405.
  9. Kantarjian H, Issa JP, Rosenfeld CS; et al. (2006). "Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study". Cancer. 106 (8): 1794–803. doi:10.1002/cncr.21792. PMID 16532500.
  10. Kantarjian H, Oki Y, Garcia-Manero G; et al. (2007). "Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia". Blood. 109 (1): 52–7. doi:10.1182/blood-2006-05-021162. PMID 16882708.
  11. Blum W, Klisovic RB, Hackanson B; et al. (2007). "Phase I study of decitabine alone or in combination with valproic acid in acute myeloid leukemia". J. Clin. Oncol. 25 (25): 3884–91. doi:10.1200/JCO.2006.09.4169. PMID 17679729.
  12. List A, Dewald G, Bennett J; et al. (2006). "Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion". N. Engl. J. Med. 355 (14): 1456–65. doi:10.1056/NEJMoa061292. PMID 17021321.
  13. "Lenalidomide (Revlimid) for anemia of myelodysplastic syndrome". The Medical letter on drugs and therapeutics. 48 (1232): 31–2. 2006. PMID 16625140.


Template:WikiDoc Sources