Rabies pathophysiology: Difference between revisions
Line 29: | Line 29: | ||
===Histopathology: Brain, Rabies=== | ===Histopathology: Brain, Rabies=== | ||
Histologic examination of biopsy or autopsy tissues is occasionally useful in diagnosing unsuspected cases of rabies that have not been tested by routine methods. When brain tissue from rabies virus-infected animals are stained with a histologic stain, such as hematoxylin and eosin, evidence of encephalomyelitis may be recognized by a trained microscopist. This method is nonspecific and not considered diagnostic for rabies. | |||
Before current diagnostic methods were available, rabies diagnosis was made using this method and the clinical case history. In fact, most of the significant histopathologic features (changes in tissue caused by disease) of rabies infection were described in the last quarter of the 19th century. After Louis Pasteur's successful experiments with rabies vaccination, scientists were motivated to identify the pathologic lesions of rabies virus. | |||
Histopathologic evidence of rabies encephalomyelitis (inflammation) in brain tissue and meninges includes the following: | |||
#[[Mononuclear]] infiltration | |||
#[[Perivascular]] cuffing of [[lymphocytes]] or [[polymorphonuclear cells]] | |||
#[[Lymphocytic foci]] | |||
#Babes [[nodules]] consisting of [[glial cells]] | |||
#[[Negri bodies] | |||
{{#ev:youtube|NP5CYphae5Y}} | {{#ev:youtube|NP5CYphae5Y}} | ||
==References== | ==References== | ||
{{Reflist|2}} | {{Reflist|2}} |
Revision as of 21:51, 10 February 2012
Rabies Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Rabies pathophysiology On the Web |
American Roentgen Ray Society Images of Rabies pathophysiology |
Risk calculators and risk factors for Rabies pathophysiology |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]
Overview
Pathophysiology & Etiology
The rabies virus is a Lyssavirus. This genus of RNA viruses also includes the Aravan virus, Australian bat lyssavirus, Duvenhage virus, European bat lyssavirus 1, European bat lyssavirus 2, Irkut virus, Khujand virus, Lagos bat virus, Mokola virus and West Caucasian bat virus. Lyssaviruses have helical symmetry, so their infectious particles are approximately cylindrical in shape. This is typical of plant-infecting viruses; human-infecting viruses more commonly have cubic symmetry and take shapes approximating regular polyhedra. Negri bodies in the infected neurons are pathognomonic.
The virus has a bullet-like shape with a length of about 180 nm and a cross-sectional diameter of about 75 nm. One end is rounded or conical and the other end is planar or concave. The lipoprotein envelope carries knob-like spikes composed of Glycoprotein G. Spikes do not cover the planar end of the virion (virus particle). Beneath the envelope is the membrane or matrix (M) protein layer which may be invaginated at the planar end. The core of the virion consists of helically arranged ribonucleoprotein. The genome is unsegmented linear antisense RNA. Also present in the nucleocapsid are RNA dependent RNA transcriptase and some structural proteins.
Longitudinal and cross-sectional schematic view of rabies virus
Pathology
Pathology of rabies infection is typically defined by encephalitis and myelitis. Perivascular infiltration with lymphocytes, polymorphonuclear leukocytes, and plasma cells can occur throughout the entire CNS. Rabies infection frequently causes cytoplasmic eosinophilic inclusion bodies (Negri bodies) in neuronal cells, especially pyramidal cells of the hippocampus and Purkinje cells of the cerebellum. These inclusions have been identified as areas of active viral replication by the identification of rabies viral antigen.
Several factors may affect the outcome of rabies exposure. These include the virus variant, the dose of virus inoculum, the route and location of exposure,as well as individual host factors, such as age and host immune defenses.
Transmission
Transmission of rabies virus usually begins when infected saliva of a host is passed to an uninfected animal. Various routes of transmission have been documented and include contamination of mucous membranes (i.e., eyes, nose, mouth), aerosol transmission, and corneal transplantations. The most common mode of rabies virus transmission is through the bite and virus-containing saliva of an infected host.
Following primary infection (see Figure, numbers 1 & 2), the virus enters an eclipse phase in which it cannot be easily detected within the host. This phase may last for several days or months. Investigations have shown both direct entry of virus into peripheral nerves at the site of infection and indirect entry after viral replication in nonnervous tissue (i.e., muscle cells). During the eclipse phase, the host immune defenses may confer cell-mediated immunity against viral infection because rabies virus is a good antigen. The uptake of virus into peripheral nerves is important for progressive infection to occur (see Figure, number 3).
After uptake into peripheral nerves, rabies virus is transported to the central nervous system (CNS) via retrograde axoplasmic flow. Typically this occurs via sensory and motor nerves at the initial site of infection. The incubation period (see figure, number 4) is the time from exposure to onset of clinical signs of disease. The incubation period may vary from a few days to several years, but is typically 1 to 3 months. Dissemination of virus within the CNS is rapid, and includes early involvement of limbic system neurons (see Figure, number 5). Active cerebral infection is followed by passive centrifugal spread of virus to peripheral nerves. The amplification of infection within the CNS occurs through cycles of viral replication and cell-to-cell transfer of progeny virus. Centrifugal spread of virus may lead to the invasion of highly innervated sites of various tissues, including the salivary glands. During this period of cerebral infection, the classic behavioral changes associated with rabies develop.
Histopathology: Brain, Rabies
Histologic examination of biopsy or autopsy tissues is occasionally useful in diagnosing unsuspected cases of rabies that have not been tested by routine methods. When brain tissue from rabies virus-infected animals are stained with a histologic stain, such as hematoxylin and eosin, evidence of encephalomyelitis may be recognized by a trained microscopist. This method is nonspecific and not considered diagnostic for rabies.
Before current diagnostic methods were available, rabies diagnosis was made using this method and the clinical case history. In fact, most of the significant histopathologic features (changes in tissue caused by disease) of rabies infection were described in the last quarter of the 19th century. After Louis Pasteur's successful experiments with rabies vaccination, scientists were motivated to identify the pathologic lesions of rabies virus.
Histopathologic evidence of rabies encephalomyelitis (inflammation) in brain tissue and meninges includes the following:
- Mononuclear infiltration
- Perivascular cuffing of lymphocytes or polymorphonuclear cells
- Lymphocytic foci
- Babes nodules consisting of glial cells
- [[Negri bodies]
{{#ev:youtube|NP5CYphae5Y}}