Left bundle branch block: Difference between revisions

Jump to navigation Jump to search
Line 49: Line 49:
* [[coronary heart disease|Coronary Artery Disease]]
* [[coronary heart disease|Coronary Artery Disease]]
* [[Hypertension]]
* [[Hypertension]]
* [[Hypertrophic obstructive cardiomyopathy]] ([[HOCM]])
* [[Myocardial infarction]]
* [[Myocardial infarction]]
* Primary disease of the cardiac electrical conduction system
* Primary disease of the cardiac electrical conduction system

Revision as of 16:27, 4 May 2012

Left bundle branch block
ECG characteristics of a typical LBBB showing wide QRS complexes with abnormal morphology in leads V1 and V6
ICD-10 I44.7
DiseasesDB 7352
eMedicine ped/2501 

WikiDoc Resources for Left bundle branch block

Articles

Most recent articles on Left bundle branch block

Most cited articles on Left bundle branch block

Review articles on Left bundle branch block

Articles on Left bundle branch block in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Left bundle branch block

Images of Left bundle branch block

Photos of Left bundle branch block

Podcasts & MP3s on Left bundle branch block

Videos on Left bundle branch block

Evidence Based Medicine

Cochrane Collaboration on Left bundle branch block

Bandolier on Left bundle branch block

TRIP on Left bundle branch block

Clinical Trials

Ongoing Trials on Left bundle branch block at Clinical Trials.gov

Trial results on Left bundle branch block

Clinical Trials on Left bundle branch block at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Left bundle branch block

NICE Guidance on Left bundle branch block

NHS PRODIGY Guidance

FDA on Left bundle branch block

CDC on Left bundle branch block

Books

Books on Left bundle branch block

News

Left bundle branch block in the news

Be alerted to news on Left bundle branch block

News trends on Left bundle branch block

Commentary

Blogs on Left bundle branch block

Definitions

Definitions of Left bundle branch block

Patient Resources / Community

Patient resources on Left bundle branch block

Discussion groups on Left bundle branch block

Patient Handouts on Left bundle branch block

Directions to Hospitals Treating Left bundle branch block

Risk calculators and risk factors for Left bundle branch block

Healthcare Provider Resources

Symptoms of Left bundle branch block

Causes & Risk Factors for Left bundle branch block

Diagnostic studies for Left bundle branch block

Treatment of Left bundle branch block

Continuing Medical Education (CME)

CME Programs on Left bundle branch block

International

Left bundle branch block en Espanol

Left bundle branch block en Francais

Business

Left bundle branch block in the Marketplace

Patents on Left bundle branch block

Experimental / Informatics

List of terms related to Left bundle branch block

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-In-Chief: Cafer Zorkun, M.D., Ph.D. [2]; Atif Mohammad, M.D.

Synonyms and related keywords: LBBB

Overview

Left bundle branch block (LBBB) is a cardiac conduction abnormality seen on the electrocardiogram (ECG). In this condition, activation of the left ventricle is delayed, which results in the left ventricle contracting later than the right ventricle.

EKG Diagnosis

The criteria to diagnose left bundle branch block on the electrocardiogram include the following:

  • The heart rhythm must be supraventricular in origin. A wide QRS complex that is not preceded by P waves would not qualify.
  • The QRS duration must be greater than or equal to 120 milliseconds
  • There should be a QS or rS complex in lead V1
  • There should be a monophasic R wave in leads I and V6

The T wave deflection should be the opposite the terminal deflection of the QRS complex. This lack of concordance in direction is known as appropriate T wave discordance and is expected in patients with left bundle branch block. A concordant T wave may suggest the presence of either ischemia or myocardial infarction.

Definitions

New Left Bundle Branch Block

New LBBB is defined as the presence of a new left bundle branch block and:[1]

  1. A prior ECG with normal QRS duration (<110 ms)12 within 24 hours before the LBBB tracing without T-wave abnormalities.
  2. Acute-onset illness with LBBB on the admission tracing resolving within 24 hours without T-wave abnormalities on the subsequent narrow QRS tracings (to exclude LBBB lasting more than 24 hours) in patients with no history of LBBB.

Old Left Bundle Branch Block

Old LBBB is defined as:[2] LBBB known to exist for more than 24 hours (by prior tracings or reports in the electronic medical record (EMR).


Left Bundle Branch Block of Unknown Duration

LBBB on tracings obtained within the first 24 hours of admission in patients with no prior ECG information.[3]

Causes of LBBB

Reading Ischemia In The Presence Of LBBB

LBBB can simulate an MI due to the associated secondary ST changes and pseudoinfarction q waves that it is associated with, and contrariwise, it can mask the EKG changes of an MI.

Sgarbossa Criteria

An EKG scoring system was developed and the independent criterion were assessed on patients from the GUSTO-1 trial patients were scored from 0-5 for presence of LBBB in the context of acute myocardial infarction.[4]

Criteria Score
1.ST-segment elevation ≥ 1 mm and concordant with QRS complex 5
2.ST-segment depression ≥ 1 mm in lead V1,V2 or V3 3
3.ST-segment elevation ≥ 5 mm and discordant with QRS complex 2

Pseudoinfarct Patterns: Simulation of an Anterior MI

  1. Can cause poor R wave progression. Often see a decrease in the amplitude of R waves to the midprecordium in the absence of a septal infarct.
  2. QS complexes are often seen in the right precordial leads in uncomplicated LBBB and they may even extend as far out as V5 or V6.
  3. Non infarctional Q waves may be seen in aVL.
  4. The Reason: LBBB causes a loss of the normal septal r waves in the right precordial leads. The septum is no longer being depolarized from left to right as it normally does because of the delay down the left bundle.
  5. There can occasionally be Rs complexes in V1. These unanticipated initial positive forces are due to early RV depolarization and may actually mask the q waves (i.e. loss of initial septal forces) that accompany an anteroseptal MI.

Simulation of an Inferior MI

  1. Noninfarctional QS complexes can be seen in leads II, III, and aVF in LBBB.
  2. There are a number of autopsy cases were there are QS waves inferiorly without evidence of an MI.
  3. There are several reported cases of intermittent LBBB in which the QS waves inferiorly were present only in the aberrantly conducted beats.
  4. Conversely, LBBB may mask the development of Q waves in an MI.

Secondary ST segment and T Wave Changes

  1. Primary ST segment and T wave changes are repolarization changes that are seen with ischemia or electrolyte imbalance and reflect actual changes in the myocardial action potentials.
  2. Secondary ST segment and T wave wave changes occur when the sequence of ventricular activation is altered without any disturbance in the electrical properties of the myocardial cells such as is seen in LBBB.
  3. As a result of secondary ST segment and T wave wave changes, the QRS and the T wave vectors are oriented in opposite directions which is known as discordance of the QRS and T wave vectors.
  4. Thus, the QRS is often predominantly negative in the right precordial leads while the T wave is oriented positively. In those leads where there is a tall positive R wave there is a negative T wave.
  5. These secondary ST segment and T wave changes often mimic infarction, and furthermore they may mask the ST segment and T wave changes of an MI.
  6. Sometimes primary ST segment and T wave changes will be superimposed on the LBBB pattern and the following suggests the diagnosis of ischemia or infarction:
    • ST segment elevation in leads with a predominant R wave. In uncomplicated LBBB, the ST segment is isoelectric or depressed.
    • T wave inversions in the right to midprecordial leads or in other leads with a predominantly negative QRS. In other words there is an absence of discordance, and there is the presence of concordance.
    • Morphology: In leads with a predominant R wave, the ST segment begins to slope downwards and blends into the T wave. The ascending limb of the T wave ascends back to the baseline at a more acute angle.
    • The ischemic T waves have a more symmetric appearance and a slightly upwardly bowed ST segment.
    • ST segment and T wave elevations simulating acute infarction: The ST segment can be markedly elevated (up to 10 mm or more at the J point ) in leads with a QS or rS segment in uncomplicated LBBB. In addition, there can be a loss of R wave progression.
    • T wave inversions in intermittent LBBB: May develop deep T wave inversions in the right to midprecordial leads of normally conducted beats in the absence of CAD. These T wave inversions are deepest in leads V1 to V4 with a symmetric or coved appearance.

Etiology of Q Waves

  1. As described earlier, in LBBB there is a loss of depolarization from left to right, which produced an initial r wave in the right precordial leads.
  2. Now there is depolarization from right to left. Consequently the initial r wave is lost, and the non infarctional QS complexes may appear in the precordial leads.
  3. The reversal of septal activation results in RS complexes in the left precordial leads.

Can You Read a Left Ventricular Free Wall Infarction In the Presence of a LBBB?

  1. No. This pattern of infarction results in abnormal q waves in the midprecordial to lateral precordial leads.
  2. In LBBB the initial septal depolarization forces are directed from right to left. These leftward septal forces will produce an initial R wave in the midprecordial to the lateral precordial leads, masking the loss of potential q waves produced by the infarction.
  3. Therefore left ventricular free wall infarction by itself will not produce diagnostic q waves in the presence of a LBBB.
  4. Poor R wave progression is seen in uncomplicated LBBB.

Can You Read a Septal Infarction in the Presence of LBBB?

  1. Yes. Again the septal forces are directed to the left in LBBB.
  2. If enough of the septum is infarcted to eliminate these initial leftward septal forces, abnormal QR, QRS, or qrs types of complexes may appear in the midprecordial to lateral precordial leads.
  3. These initial q waves may reflect posterior and superior forces from the spared basal portion of the septum.
  4. Small q waves of 0.03 sec or less may be seen in leads I, V5 to V6 in uncomplicated LBBB.
  5. The presence of q waves laterally is an example of false localization. [5]

Treatment

  • Medical Care: Patients with LBBB require complete cardiac evaluation, and those with LBBB and near-syncope or syncope may require a pacemaker.
  • Surgical Care: Some patients with LBBB, a markedly prolonged QRS, and congestive heart failure may benefit from a pacemaker, which provides rapid left ventricular contractions.

Classification

Some sources distinguish between a "left anterior fascicular block" (LAFB)[6] and a "left posterior fascicular block" (LAPB).[7] This refers to the bifurcation of the left bundle branch.

EKG Examples







See also

References

  1. Shvilkin A, Bojovic B, Vajdic B, Gussak I, Ho KK, Zimetbaum P, Josephson ME. Vectorcardiographic and electrocardiographic criteria to distinguish new and old left bundle branch block. Heart Rhythm 2010;7:1085–1092.
  2. Shvilkin A, Bojovic B, Vajdic B, Gussak I, Ho KK, Zimetbaum P, Josephson ME. Vectorcardiographic and electrocardiographic criteria to distinguish new and old left bundle branch block. Heart Rhythm 2010;7:1085–1092.
  3. Shvilkin A, Bojovic B, Vajdic B, Gussak I, Ho KK, Zimetbaum P, Josephson ME. Vectorcardiographic and electrocardiographic criteria to distinguish new and old left bundle branch block. Heart Rhythm 2010;7:1085–1092.
  4. Sgarbossa EB, Pinski SL, Barbagelata A, Underwood DA, Gates KB, Topol EJ, Califf RM, Wagner GS (1996). "Electrocardiographic diagnosis of evolving acute myocardial infarction in the presence of left bundle-branch block. GUSTO-1 (Global Utilization of Streptokinase and Tissue Plasminogen Activator for Occluded Coronary Arteries) Investigators". N. Engl. J. Med. 334 (8): 481–7. PMID 8559200. Unknown parameter |month= ignored (help)
  5. Myocardial Infarction, Electrocardiographic Differential Dx, Ary L. Goldberger, 3rd ed., Mosby Co., St. Louis, 1984, p.85 93.
  6. Template:GPnotebook
  7. Template:GPnotebook

External links

Additional resources


Template:SIB

de:Linksschenkelblock


Template:WikiDoc Sources