Pulmonary embolism treatment approach: Difference between revisions

Jump to navigation Jump to search
No edit summary
No edit summary
Line 4: Line 4:
==Overview==
==Overview==
'''Pulmonary embolism''' (PE) is a potentially lethal condition, with a mortality rate close to 30 percent without treatment. Thus, prompt therapy is of utmost important. In most cases, [[anticoagulant]] therapy is the mainstay of treatment. Acutely, supportive treatments, such as [[oxygen]] or [[analgesia]], are often required.
'''Pulmonary embolism''' (PE) is a potentially lethal condition, with a mortality rate close to 30 percent without treatment. Thus, prompt therapy is of utmost important. In most cases, [[anticoagulant]] therapy is the mainstay of treatment. Acutely, supportive treatments, such as [[oxygen]] or [[analgesia]], are often required.
==Triage==
==Triage==
One of the most important aspects in the care of a patient with acute PE is triage or early risk stratification. Patients who are diagnosed with a low-risk PE may require only anticoagulation and medical ward admission, whereas patients with massive PE or those with submassive PE who do not improve clinically may benefit from thrombolysis and ICU admission. Initial supportive therapies in these patients may include:
One of the most important aspects in the care of a patient with acute PE is triage or early risk stratification.  
* Patients who are diagnosed with a low-risk PE may require only anticoagulation and medical ward admission.
* On the other hand, patients with massive PE or those with submassive PE who do not improve clinically may benefit from thrombolysis and ICU admission. Initial supportive therapies in these patients may include:
** Respiratory support with oxygen for [[Hypoxemia|hypoxemic]] patients or mechanical [[ventilation]] in cases of severe [[Hypoxemia|hypoxemia]] or [[respiratory failure]].
** Hemodynamic support with intravenous fluids or intravenous vasopressors for [[hypotensive]] patients. Intravenous fluids should be administered cautiously, as increased right ventricular load can disable the right ventricular oxygen supply-to-demand balance.<ref name="pmid10199533">{{cite journal |author=Mercat A, Diehl JL, Meyer G, Teboul JL, Sors H |title=Hemodynamic effects of fluid loading in acute massive pulmonary embolism |journal=Crit. Care Med. |volume=27 |issue=3 |pages=540–4 |year=1999 |month=March |pmid=10199533|doi=|url=http://meta.wkhealth.com/pt/pt-core/template-journal/lwwgateway/media/landingpage.htm?issn=0090-3493&volume=27&issue=3&spage=540|accessdate=2011-12-12}}</ref>
 
==Anticoagulation==
 
 
===Initial anticoagulation===
 
 
===Long-term anticoagulation===
 
 
===Extended anticoagulation===
 
 
===Specific circumstances===
 
 
===Newer anticoagulants===
 
 
==Thrombolysis==
 
 
==Treatment algorithm==


===Respiratory support===
* Oxygen should be used in [[Hypoxemia|hypoxemic]] patients.
* In cases of severe [[Hypoxemia|hypoxemia]] or [[respiratory failure]], [[intubation]] and mechanical [[ventilation]] may be required.


===Hemodynamic support===<ref name="pmid10199533">{{cite journal |author=Mercat A, Diehl JL, Meyer G, Teboul JL, Sors H |title=Hemodynamic effects of fluid loading in acute massive pulmonary embolism |journal=Crit. Care Med. |volume=27 |issue=3 |pages=540–4 |year=1999 |month=March |pmid=10199533 |doi=|url=http://meta.wkhealth.com/pt/pt-core/template-journal/lwwgateway/media/landingpage.htm?issn=0090-3493&volume=27&issue=3&spage=540|accessdate=2011-12-12}}</ref>
==Compression Stockings==
*Intravenous fluid administration is the first-line therapy in [[hypotensive]] patients.
*IV fluids should be administered cautiously, as increased right ventricular load can disable the right ventricular oxygen supply-to-demand balance.
*If the hemodynamic status fails to improve, then intravenous vasopressors should be considered.


==Initial Treatment==
Depending on the clinical presentation, initial therapy is primarily aimed at:
Depending on the clinical presentation, initial therapy is primarily aimed at:
# Restoration of flow through occluded pulmonary arteries, OR
# Restoration of flow through occluded pulmonary arteries, OR

Revision as of 03:29, 8 May 2012

Pulmonary Embolism Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Pulmonary Embolism from other Diseases

Epidemiology and Demographics

Risk Factors

Triggers

Natural History, Complications and Prognosis

Diagnosis

Diagnostic criteria

Assessment of Clinical Probability and Risk Scores

Pulmonary Embolism Assessment of Probability of Subsequent VTE and Risk Scores

History and Symptoms

Physical Examination

Laboratory Findings

Arterial Blood Gas Analysis

D-dimer

Biomarkers

Electrocardiogram

Chest X Ray

Ventilation/Perfusion Scan

Echocardiography

Compression Ultrasonography

CT

MRI

Treatment

Treatment approach

Medical Therapy

IVC Filter

Pulmonary Embolectomy

Pulmonary Thromboendarterectomy

Discharge Care and Long Term Treatment

Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Follow-Up

Support group

Special Scenario

Pregnancy

Cancer

Trials

Landmark Trials

Case Studies

Case #1

Pulmonary embolism treatment approach On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Pulmonary embolism treatment approach

CDC on Pulmonary embolism treatment approach

Pulmonary embolism treatment approach in the news

Blogs on Pulmonary embolism treatment approach

Directions to Hospitals Treating Pulmonary embolism treatment approach

Risk calculators and risk factors for Pulmonary embolism treatment approach

Editor(s)-In-Chief: The APEX Trial Investigators, C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-In-Chief: Cafer Zorkun, M.D., Ph.D. [2]

Overview

Pulmonary embolism (PE) is a potentially lethal condition, with a mortality rate close to 30 percent without treatment. Thus, prompt therapy is of utmost important. In most cases, anticoagulant therapy is the mainstay of treatment. Acutely, supportive treatments, such as oxygen or analgesia, are often required.

Triage

One of the most important aspects in the care of a patient with acute PE is triage or early risk stratification.

  • Patients who are diagnosed with a low-risk PE may require only anticoagulation and medical ward admission.
  • On the other hand, patients with massive PE or those with submassive PE who do not improve clinically may benefit from thrombolysis and ICU admission. Initial supportive therapies in these patients may include:
    • Respiratory support with oxygen for hypoxemic patients or mechanical ventilation in cases of severe hypoxemia or respiratory failure.
    • Hemodynamic support with intravenous fluids or intravenous vasopressors for hypotensive patients. Intravenous fluids should be administered cautiously, as increased right ventricular load can disable the right ventricular oxygen supply-to-demand balance.[1]

Anticoagulation

Initial anticoagulation

Long-term anticoagulation

Extended anticoagulation

Specific circumstances

Newer anticoagulants

Thrombolysis

Treatment algorithm

Compression Stockings

Depending on the clinical presentation, initial therapy is primarily aimed at:

  1. Restoration of flow through occluded pulmonary arteries, OR
  2. Prevention of potentially fatal early recurrences.

Most common reason for mortality is recurrent PE, occurring within the few hours of the initial event[2]. Anticoagulant therapy decreases mortality by 2% to 8%, thus making it absolutely necessary to start therapy as soon as possible[3].

Majority of the patients should be started on anticoagulation, with one of the following drugs[4][5]:

Treatment Protocol[6]

 
 
 
 
 
 
 
Stabilize the patient
  • Respiratory Support
  • Hemodynamic Support
  • Anticoagulation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Initial Treatment options (≤5 Days)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Long term treatment (≥3 Month) (INR target, 2.0-3.0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Extended treatment (Indefinite) (INR target, 2.0-3.0 OR 1.5-1.9)

Extended treatment should be considered in patients with:

  1. Active Cancer.
  2. Unprovoked Pulmonary embolism.
  3. Recurrent venous thromboembolism.

Indefinite treatment refers to continued anticoagulation without a pre-scheduled stop date.

Anticoaulation may be stopped because of:

  1. Risk of bleeding.
  2. Change in patients preference.

Treatment of choice:Special considerations

Treatment Algorithm

 
 
 
 
 
 
 
Stabilize the patient
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Is anticoagulation contraindicated ?
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Yes
 
 
 
 
 
 
 
No
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Diagnostic evaluation
 
 
 
 
 
 
 
Anticoagulate with SC LMWH or IV UFH
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PE excluded
 
PE confirmed
 
 
 
 
 
Diagnostic evaluation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
No further Treatment
 
Inferior vena cava filter
 
 
PE excluded
 
PE confirmed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Discontinue Anticoagulants
 
Clinicaly severe enough to need Thrombolysis
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Yes
 
No
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Is thrombolytic Contraindicated?
 
Continue Anticoagulants
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Yes
 
No
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Surgical emblectomy or catheter based interventions
 
Hold Anticoagulation, Give Thrombolytics then resume Anticoagulations
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Patient shows clinical improvement
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
No
 
Yes
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Surgical emblectomy or catheter based interventions
 
Continue anticoagulation

References

  1. Mercat A, Diehl JL, Meyer G, Teboul JL, Sors H (1999). "Hemodynamic effects of fluid loading in acute massive pulmonary embolism". Crit. Care Med. 27 (3): 540–4. PMID 10199533. Retrieved 2011-12-12. Unknown parameter |month= ignored (help)
  2. Carson JL, Kelley MA, Duff A, Weg JG, Fulkerson WJ, Palevsky HI, Schwartz JS, Thompson BT, Popovich J, Hobbins TE (1992). "The clinical course of pulmonary embolism". N. Engl. J. Med. 326 (19): 1240–5. doi:10.1056/NEJM199205073261902. PMID 1560799. Retrieved 2011-12-12. Unknown parameter |month= ignored (help)
  3. Goldhaber SZ, Visani L, De Rosa M (1999). "Acute pulmonary embolism: clinical outcomes in the International Cooperative Pulmonary Embolism Registry (ICOPER)". Lancet. 353 (9162): 1386–9. PMID 10227218. Retrieved 2011-12-12. Unknown parameter |month= ignored (help)
  4. Kearon C, Kahn SR, Agnelli G, Goldhaber S, Raskob GE, Comerota AJ; et al. (2008). "Antithrombotic therapy for venous thromboembolic disease: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition)". Chest. 133 (6 Suppl): 454S–545S. doi:10.1378/chest.08-0658. PMID 18574272.
  5. Torbicki A, Perrier A, Konstantinides S, Agnelli G, Galiè N, Pruszczyk P; et al. (2008). "Guidelines on the diagnosis and management of acute pulmonary embolism: the Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC)". Eur Heart J. 29 (18): 2276–315. doi:10.1093/eurheartj/ehn310. PMID 18757870.
  6. Agnelli G, Becattini C (2010). "Acute pulmonary embolism". N Engl J Med. 363 (3): 266–74. doi:10.1056/NEJMra0907731. PMID 20592294.

Template:WH Template:WS