Acute myeloid leukemia other diagnostic studies: Difference between revisions
No edit summary |
No edit summary |
||
Line 9: | Line 9: | ||
===Fluorescent in situ hybridization=== | ===Fluorescent in situ hybridization=== | ||
Because [[acute promyelocytic leukemia]] (APL) has the highest curability and requires a unique form of treatment, it is important to quickly establish or exclude the diagnosis of this subtype of leukemia. [[Fluorescent in situ hybridization]] performed on blood or bone marrow is often used for this purpose, as it readily identifies the [[chromosomal translocation]] (t[15;17]) that characterizes APL.<ref>{{cite journal | author = Grimwade D, Howe K, Langabeer S, Davies L, Oliver F, Walker H, Swirsky D, Wheatley K, Goldstone A, Burnett A, Solomon E | title = Establishing the presence of the t(15;17) in suspected acute promyelocytic leukaemia: cytogenetic, molecular and PML immunofluorescence assessment of patients entered into the M.R.C. ATRA trial. M.R.C. Adult Leukaemia Working Party. | journal = Br J Haematol | volume = 94 | issue = 3 | pages = 557-73 | year = 1996 | pmid = 8790159}}</ref> | Because [[acute promyelocytic leukemia]] (APL) has the highest curability and requires a unique form of treatment, it is important to quickly establish or exclude the diagnosis of this subtype of leukemia. [[Fluorescent in situ hybridization]] performed on blood or bone marrow is often used for this purpose, as it readily identifies the [[chromosomal translocation]] (t[15;17]) that characterizes APL.<ref>{{cite journal | author = Grimwade D, Howe K, Langabeer S, Davies L, Oliver F, Walker H, Swirsky D, Wheatley K, Goldstone A, Burnett A, Solomon E | title = Establishing the presence of the t(15;17) in suspected acute promyelocytic leukaemia: cytogenetic, molecular and PML immunofluorescence assessment of patients entered into the M.R.C. ATRA trial. M.R.C. Adult Leukaemia Working Party. | journal = Br J Haematol | volume = 94 | issue = 3 | pages = 557-73 | year = 1996 | pmid = 8790159}}</ref> | ||
===Cytochemistry=== | |||
This is a test used to differentiate [[AML]] from [[ALL]] using a stain which reacts to a particular type of leukemic cells. The stain causes the granules of most AML cells to appear as black spots under the microscope, but it does not cause ALL cells to change colors. | |||
Revision as of 19:18, 8 August 2012
Acute myeloid leukemia Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Acute myeloid leukemia other diagnostic studies On the Web |
American Roentgen Ray Society Images of Acute myeloid leukemia other diagnostic studies |
Risk calculators and risk factors for Acute myeloid leukemia other diagnostic studies |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Raviteja Guddeti, M.B.B.S. [2]
Overview
Other Diagnostic Tests
Fluorescent in situ hybridization
Because acute promyelocytic leukemia (APL) has the highest curability and requires a unique form of treatment, it is important to quickly establish or exclude the diagnosis of this subtype of leukemia. Fluorescent in situ hybridization performed on blood or bone marrow is often used for this purpose, as it readily identifies the chromosomal translocation (t[15;17]) that characterizes APL.[1]
Cytochemistry
This is a test used to differentiate AML from ALL using a stain which reacts to a particular type of leukemic cells. The stain causes the granules of most AML cells to appear as black spots under the microscope, but it does not cause ALL cells to change colors.
References
- ↑ Grimwade D, Howe K, Langabeer S, Davies L, Oliver F, Walker H, Swirsky D, Wheatley K, Goldstone A, Burnett A, Solomon E (1996). "Establishing the presence of the t(15;17) in suspected acute promyelocytic leukaemia: cytogenetic, molecular and PML immunofluorescence assessment of patients entered into the M.R.C. ATRA trial. M.R.C. Adult Leukaemia Working Party". Br J Haematol. 94 (3): 557–73. PMID 8790159.