Lead: Difference between revisions
m Robot: Automated text replacement (-{{SIB}} + & -{{EH}} + & -{{EJ}} + & -{{Editor Help}} + & -{{Editor Join}} +) |
m Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}) |
||
Line 261: | Line 261: | ||
== References == | == References == | ||
{{reflist}} | {{reflist|2}} | ||
== Further reading == | == Further reading == |
Latest revision as of 19:02, 4 September 2012
Template:Elementbox header
Template:Elementbox series Template:Elementbox groupperiodblock Template:Elementbox appearance img Template:Elementbox atomicmass gpm Template:Elementbox econfig Template:Elementbox epershell Template:Elementbox section physicalprop Template:Elementbox phase Template:Elementbox density gpcm3nrt Template:Elementbox densityliq gpcm3mp Template:Elementbox meltingpoint Template:Elementbox boilingpoint Template:Elementbox heatfusion kjpmol Template:Elementbox heatvaporiz kjpmol Template:Elementbox heatcapacity jpmolkat25 Template:Elementbox vaporpressure katpa Template:Elementbox section atomicprop Template:Elementbox crystalstruct Template:Elementbox oxistates Template:Elementbox electroneg pauling Template:Elementbox ionizationenergies4 Template:Elementbox atomicradius pm Template:Elementbox atomicradiuscalc pm Template:Elementbox covalentradius pm Template:Elementbox vanderwaalsrad pm Template:Elementbox section miscellaneous Template:Elementbox magnetic Template:Elementbox eresist ohmmat20 Template:Elementbox thermalcond wpmkat300k Template:Elementbox thermalexpansion umpmkat25 Template:Elementbox speedofsound rodmpsatrt Template:Elementbox youngsmodulus gpa Template:Elementbox shearmodulus gpa Template:Elementbox bulkmodulus gpa Template:Elementbox poissonratio Template:Elementbox mohshardness Template:Elementbox brinellhardness mpa Template:Elementbox cas number | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Selected isotopes | |||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Notable characteristicsLead has a dull luster and is a dense, ductile, very soft, highly malleable, bluish-white metal that has poor electrical conductivity. This true metal is highly resistant to corrosion, and because of this property, it is used to contain corrosive liquids (e.g. sulfuric acid). Because lead is very malleable and resistant to corrosion it is extensively used in building construction e.g. external coverings of roofing joints. Lead can be toughened by adding a small amount of antimony or other metals to it. It is a common misconception that lead has a zero Thomson effect. All lead, except 204Pb, is the end product of a complex radioactive decay (see isotopes of lead below). Lead is also poisonous. HistoryLead has been commonly used for thousands of years because it is widespread, easy to extract and easy to work with. It is highly malleable and ductile as well as easy to smelt. In the early Bronze Age, lead was used with antimony and arsenic. Lead was mentioned in the Book of Exodus (15:10). In alchemy, lead was thought to be the oldest metal and was associated with the planet Saturn. Lead pipes that bear the insignia of Roman emperors are still in service and many Roman "pigs" (ingots) of lead figure in Derbyshire lead mining history and in the history of the industry in other English centres. The Romans also used lead in molten form to secure iron pins that held together large limestone blocks in certain monumental buildings. Lead's symbol Pb is an abbreviation of its Latin name plumbum for soft metals; originally it was plumbum nigrum, where plumbum candidum was tin. The English words "plumbing" and "plumb-bob" also derive from this Latin root.Lead also refers collectively to the organic and inorganic compounds of lead, which are toxic. Lead poisoning was documented in ancient Rome, Greece, and China. In the 20th century, the use of lead in paint pigments was sharply reduced because of the danger of lead poisoning, especially to children.[1][2][3] By the mid-1980s, a significant shift in lead end-use patterns had taken place. Much of this shift was a result of the U.S. lead consumers' compliance with environmental regulations that significantly reduced or eliminated the use of lead in non-battery products, including gasoline, paints, solders, and water systems. Lead use is being further curtailed by the European Union's RoHS directive. Lead may still be found in harmful quantities in stoneware, vinyl (such as that used for tubing and the insulation of electrical cords), and brass manufactured in China. Between 2006 and 2007 many children's toys made in China were recalled, primarily due to lead in paint used to color the product. OccurrenceMetallic lead does occur in nature, but it is rare. Lead is usually found in ore with zinc, silver and (most abundantly) copper, and is extracted together with these metals. The main lead mineral is galena (PbS), which contains 86.6% lead. Other common varieties are cerussite (PbCO3) and anglesite (PbSO4). Sources of LeadTop lead producing countries (2008) are Australia, China, USA, Peru, Canada, Mexico, Sweden, Morocco, South Africa and North Korea.[4] Lead mining in WalesLead ore (galena) is found commonly in northeast Wales. The Northeast Wales Orefield was by far the most important source of lead and zinc in Wales and second in national importance only to the North Pennine Orefield. Lead mining dates back to at least Roman times and continued until well into the 20th century. Galena is present in steeply dipping fissure veins and in pipes and is in Mississippi Valley-type lead-zinc-fluorite and copper-dolomite associations. The mineralisation occurs in the upper parts of the Loggerheads and Cefn Mawr Formations of the Carboniferous Limestone.[5] Processing of metal from oreThe principal ores of lead are galena (PbS), anglesite (PbSO Lead oxide from the roasting process is reduced in a coke-fired blast furnace.[7] This converts most of the lead to its metallic form. Three additional layers separate in the process and float to the top of the metallic lead. These are slag (silicates containing 1.5% lead), matte (sulfides containing 15% lead), and speiss (arsenides of iron and copper). These wastes contain concentrations of copper, zinc, cadmium, and bismuth that can be recovered economically, as can their content of unreduced lead.[6] Metallic lead that results from the roasting and blast furnace processes still contains significant contaminants of arsenic, antimony, bismuth, zinc, copper, silver, and gold. The melt is treated in a reverberatory furnace with air, steam, and sulfur, which oxidizes the contaminants except silver, gold, and bismuth. The oxidized contaminants are removed by drossing, where they float to the top and are skimmed off.[6][4] Most lead ores contain significant concentrations of silver, resulting in the smelted metal also containing silver as a contaminant. Metallic silver as well as gold is removed and recovered economically by means of the Parkes process.[8][6][4] Desilvered lead is freed of bismuth according to the Betterton-Kroll process by treating it with metallic calcium and magnesium, which forms a bismuth dross that can be skimmed off.[6][4] Very pure lead can be obtained by processing smelted lead electolytically by means of the Betts process. The process uses anodes of impure lead and cathodes of pure lead in an electrolyte of silica fluoride.[6][4] Production and RecyclingWorldwide production and consumption of lead is increasing. Total annual production is about 8 million tonnes; about half is produced from recycled scrap. The main countries are Australia, China and the US, which account for more than half of primary production. The most common lead ore is galena or lead sulfide.[9]
At current use rates, the supply of lead is estimated to run out in 42 years.[11] Environmental analyst, Lester Brown, however, has suggested lead could run out within 18 years based on an extrapolation of 2% growth per year.[12] This may need to be reviewed to take account of renewed interest in recycling, and rapid progress in fuel cell technology. IsotopesLead has seven isotopes in total (3 stable, 3 unstable 1 radiogenic). The 3 stable isotopes are 206Pb, 207Pb, & 208Pb, and the 3 unstable isotopes are 204Pb, 205Pb, & 210Pb, along with one common radiogenic isotope 202Pb with a half-life of ~53,000 years. Health effectsLead is a poisonous metal that can damage nervous connections (especially in young children) and cause blood and brain disorders. Long term exposure to lead or its salts (especially soluble salts or the strong oxidant PbO2) can cause nephropathy, and colic-like abdominal pains. The concern about lead's role in cognitive deficits in children has brought about widespread reduction in its use (lead exposure has been linked to schizophrenia). Most cases of adult elevated blood lead levels are workplace-related.[13] High blood levels are associated with delayed puberty in girls.[14] Older houses may still contain substantial amounts of lead paint. White lead paint has been withdrawn from sale in industrialized countries, but the yellow lead chromate is still in use; for example, Holland Colours Holcolan Yellow. Old paint should not be stripped by sanding, as this produces inhalable dust. Lead salts used in pottery glazes have on occasion caused poisoning, when acid drinks, such as fruit juices, have leached lead ions out of the glaze. It has been suggested that what was known as "Devon colic" arose from the use of lead-lined presses to extract apple juice in the manufacture of cider. Lead is considered to be particularly harmful for women's ability to reproduce. For that reason, many universities do not hand out lead-containing samples to women for instructional laboratory analyses. Lead acetate (also known as sugar of lead) was used by the Roman Empire as a sweetener for wine, and some consider this to be the cause of the dementia that affected many of the Roman Emperors.[15] Lead as a soil contaminant is a widespread issue, since lead is present in natural deposits and may also enter soil through (leaded) gasoline leaks from underground storage tanks or through a wastestream of lead paint or lead grindings from certain industrial operations. Biochemistry of lead poisoningIn the human body, lead inhibits α-aminolevulinate (ALA) dehydratase and ferrochelatase, preventing both porphobilinogen formation and the incorporation of iron into protoporphyrin IX, the final step in heme synthesis. This causes ineffective heme synthesis and subsequent microcytic anemia. Leaching of lead from metal surfacesIt is clear from the Pourbaix diagram below that lead is more likely to corrode in a citrate medium than it is in a non-complexing medium. The central part of the diagram shows that lead metal is more easy to oxidise in the citrate medium than it is in normal water. In a Pourbaix diagram, the acidity is plotted on the x axis using the pH scale, while how oxidising/reducing nature of the system is plotted on the y axis in terms of volts relative to the standard hydrogen electrode. The diagram shows the form of the element which is most chemically stable at each point, it only comments on thermodynamics and it says nothing about the rate of change (kinetics). Descriptive chemistryTemplate:Seealso Various oxidized forms of lead are easily reduced to the metal. An example is heating PbO with mild organic reducing agents such as glucose. A mixture of the oxide and the sulfide heated together without any reducing agent will also form the metal.[8]
Metallic lead is attacked only superficially by air, forming a thin layer of oxide that protects it from further oxidation. The metal is not attacked by sulfuric or hydrochloric acids. It does, however, dissolve in nitric acid with the evolution of nitric oxide gas to form dissolved Pb(NO3)2.
When heated with nitrates of alkali metals, metallic lead oxidizes to form PbO (also known as litharge), leaving the corresponding alkali nitrite. PbO is representative of lead's II oxidation state. It is soluble in nitric and acetic acids, from which solutions it is possible to precipitate halide, sulfate, chromate, carbonate (PbCO3), and basic carbonate (Pb The II oxide is also soluble in alkali hydroxide solutions to form the corresponding plumbite salt.[8]
Chlorination of plumbite solutions causes the formation of lead's IV oxidation state.
Lead dioxide is representative of the IV state, and is a powerful oxidizing agent. The chloride of this oxidation state is formed only with difficulty and decomposes readily into the II chloride and chlorine gas. The bromide and iodide of IV lead are not known to exist.[17] Lead dioxide dissolves in alkali hydroxide solutions to form the corresponding plumbates.[8]
Lead also has an oxide that is a hybrid between the II and IV oxidation states. Red lead (also called minium) is Pb3O4. Lead readily forms an equimolar alloy with sodium metal that reacts with alkyl halides to form organometallic compounds of lead such as tetraethyl lead.[18] Chloride complexesLead(II) forms a series of complexes with chloride, the formation of which alters the corrosion chemistry of the lead. This will tend to limit the solubility of lead in saline media.
Phase diagrams of solubilitiesLead(II) sulfate is poorly soluble, as can be seen in the following diagram showing addition of SO42− to a solution containing 0.1M of Pb2+. The pH of the solution is 4.5, as above that, Pb2+ concentration can never reach 0.1M due to the formation of Pb(OH)2. Observe that Pb2+ solubility drops 10,000 fold as SO42− reaches 0.1M Here it can be seen that the addition of chloride can lower the solubility of lead, however in chloride rich media (such as aqua regia) the lead can become soluble again as anionic chlorocomplexes. The Pourbaix diagram on the right is for a moderate concentration (0.1 M) of chloride. Applications
Former applications
Contrary to popular belief, pencil "leads" have never been made from lead. The term comes from the Roman stylus, called the penicillus, which was made of lead.[24] When the pencil originated as a wrapped graphite writing tool, the particular type of graphite being used was named plumbago (lit. "act for lead"; "leadmocku"). PhrasesA "lead pipe cinch" is something that is absolutely certain. In the 19th century, a horse saddle was safe when it was well "cinched". The "lead pipe" qualifier is an obscure "intensifier".[25] A "lead pencil" is a leftover term from when the original pencils were made from the only known deposit of graphite ever to be found in a pure, solid state, Grey Knotts in 16th century England. The new material was assumed to be a form of lead. Modern pencils use a marking core made of powdered, refined graphite mixed with clay, as has been the practice for centuries. It is said that if one made a lead balloon, it would not fly. As lead is a very heavy element, it is presumed it will not fly. However, if one achieves the right size-to-weight ratio and uses helium instead of oxygen or air, a lead balloon could fly. This was tested by the MythBusters. TriviaThe band Led Zeppelin was originally called lead zeppelin. Keith Moon and John Entwistle suggested that a possible supergroup containing themselves, Jimmy Page, and Jeff Beck would go down like a lead zeppelin, a term Entwistle used to describe a bad gig.[26] The group deliberately dropped the 'a' in Lead at the suggestion of their manager, Peter Grant, to prevent "thick Americans"[27] from pronouncing it as "leed".[28] See alsoReferences
Further reading
External links
Template:Compact periodic table Template:Link FA af:Lood ar:رصاص az:Qurğuşun bn:সীসা be:Свінец bs:Olovo (hemija) bg:Олово ca:Plom cv:Хура тăхлан cs:Olovo co:Piombu cy:Plwm da:Bly de:Blei et:Plii el:Μόλυβδος eo:Plumbo eu:Berun fa:سرب fur:Plomp ga:Luaidhe gl:Chumbo ko:납 hy:Կապար hr:Olovo (element) io:Plombo id:Timbal is:Blý it:Piombo he:עופרת ka:ტყვია sw:Risasi ht:Plon ku:Sirb la:Plumbum lv:Svins lb:Bläi lt:Švinas jbo:cnisa hu:Ólom mi:Matā (konganuku) mr:शिसे mn:Хартугалга nah:Temētztli nl:Lood (element) no:Bly nn:Bly oc:Plomb nds:Blie ksh:Blëij qu:Titi sa:सीसम् sco:Leid (element) scn:Chiummu simple:Lead sk:Olovo sl:Svinec sr:Олово sh:Olovo fi:Lyijy sv:Bly te:సీసము th:ตะกั่ว tg:Сурб uk:Свинець ur:رصاص wuu:铅 yi:בליי zh-yue:鉛 Template:WH Template:WikiDoc Sources Template:Jb1 Template:Jb2 |