ACOT2: Difference between revisions

Jump to navigation Jump to search
WikiBot (talk | contribs)
m Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}})
 
m task, replaced: Journal of lipid research → Journal of Lipid Research using AWB
 
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''Acyl-CoA thioesterase 2''', also known as '''ACOT2''', is an [[enzyme]] which in humans is encoded by the ''ACOT2'' [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: ACOT2 acyl-CoA thioesterase 2| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=10965| accessdate = }}</ref><ref name="pmid10944470">{{cite journal | vauthors = Jones JM, Gould SJ | title = Identification of PTE2, a human peroxisomal long-chain acyl-CoA thioesterase | journal = Biochemical and Biophysical Research Communications | volume = 275 | issue = 1 | pages = 233–40 | date = Aug 2000 | pmid = 10944470 | doi = 10.1006/bbrc.2000.3285 }}</ref><ref name="pmid16940157">{{cite journal | vauthors = Hunt MC, Rautanen A, Westin MA, Svensson LT, Alexson SE | title = Analysis of the mouse and human acyl-CoA thioesterase (ACOT) gene clusters shows that convergent, functional evolution results in a reduced number of human peroxisomal ACOTs | journal = FASEB Journal | volume = 20 | issue = 11 | pages = 1855–64 | date = Sep 2006 | pmid = 16940157 | doi = 10.1096/fj.06-6042com }}</ref>
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}


<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
Acyl-CoA thioesterases, such as ACOT2, are a group of enzymes that hydrolyze [[Coenzyme A]] (CoA) [[ester]]s, such as acyl-CoAs, bile CoAs, and CoA esters of prostaglandins, to the corresponding free acid and CoA.<ref name="pmid16103133">{{cite journal | vauthors = Hunt MC, Yamada J, Maltais LJ, Wright MW, Podesta EJ, Alexson SE | title = A revised nomenclature for mammalian acyl-CoA thioesterases/hydrolases | journal = Journal of Lipid Research | volume = 46 | issue = 9 | pages = 2029–32 | date = Sep 2005 | pmid = 16103133 | doi = 10.1194/jlr.E500003-JLR200 }}</ref> ACOT2 shows high acyl-CoA [[thioesterase]] activity on medium- and long-chain acyl-CoAs, with an optimal pH of 8.5. It is most active on [[myristic acid|myristoyl]]-CoA but also shows high activity on [[palmitic acid|palmitoyl]]-CoA, [[stearic acid|stearoyl]]-CoA, and [[arachidic acid|arachidoyl]]-CoA.<ref name="pmid10944470"/>
{{GNF_Protein_box
| image =
| image_source =
| PDB =
| Name = Acyl-CoA thioesterase 2
| HGNCid = 18431
| Symbol = ACOT2
| AltSymbols =; PTE2; Mte1; ZAP128
| OMIM = 609972
| ECnumber =
| Homologene = 25661
| MGIid = 2159605
| GeneAtlas_image1 = PBB_GE_ACOT2_202982_s_at_tn.png
| Function = {{GNF_GO|id=GO:0004759 |text = carboxylesterase activity}} {{GNF_GO|id=GO:0016290 |text = palmitoyl-CoA hydrolase activity}} {{GNF_GO|id=GO:0016787 |text = hydrolase activity}}
| Component = {{GNF_GO|id=GO:0005739 |text = mitochondrion}} {{GNF_GO|id=GO:0005777 |text = peroxisome}}
| Process = {{GNF_GO|id=GO:0000038 |text = very-long-chain fatty acid metabolic process}} {{GNF_GO|id=GO:0001676 |text = long-chain fatty acid metabolic process}} {{GNF_GO|id=GO:0006629 |text = lipid metabolic process}} {{GNF_GO|id=GO:0006637 |text = acyl-CoA metabolic process}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 10965
    | Hs_Ensembl = ENSG00000119673
    | Hs_RefseqProtein = NP_006812
    | Hs_RefseqmRNA = NM_006821
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = 14
    | Hs_GenLoc_start = 73105516
    | Hs_GenLoc_end = 73112110
    | Hs_Uniprot = P49753
    | Mm_EntrezGene = 171210
    | Mm_Ensembl = 
    | Mm_RefseqmRNA = NM_134188
    | Mm_RefseqProtein = NP_598949
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 
    | Mm_GenLoc_start = 
    | Mm_GenLoc_end = 
    | Mm_Uniprot = 
  }}
}}
'''Acyl-CoA thioesterase 2''', also known as '''ACOT2''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: ACOT2 acyl-CoA thioesterase 2| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=10965| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
==Function==
{{PBB_Summary
The protein encoded by the ACOT2 gene is part of a family of [[Acyl-CoA]] [[thioesterase]]s, which catalyze the [[hydrolysis]] of various [[Coenzyme A]] esters of various molecules to the free acid plus CoA. These enzymes have also been referred to in the literature as acyl-CoA hydrolases, acyl-CoA thioester hydrolases, and palmitoyl-CoA hydrolases. The reaction carried out by these [[enzyme]]s is as follows:
| section_title =
| summary_text =
}}


==References==
CoA ester + H<sub>2</sub>O → free acid + coenzyme A
{{reflist|2}}
 
==Further reading==
These enzymes use the same [[substrate (chemistry)|substrate]]s as long-chain acyl-CoA synthetases, but have a unique purpose in that they generate the free acid and CoA, as opposed to long-chain acyl-CoA synthetases, which ligate fatty acids to CoA, to produce the CoA ester.<ref>{{cite journal|last1=Mashek|first1=DG|last2=Bornfeldt|first2=KE|last3=Coleman|first3=RA|last4=Berger|first4=J|last5=Bernlohr|first5=DA|last6=Black|first6=P|last7=DiRusso|first7=CC|last8=Farber|first8=SA|last9=Guo|first9=W|last10=Hashimoto|first10=N|last11=Khodiyar|first11=V|last12=Kuypers|first12=FA|last13=Maltais|first13=LJ|last14=Nebert|first14=DW|last15=Renieri|first15=A|last16=Schaffer|first16=JE|last17=Stahl|first17=A|last18=Watkins|first18=PA|last19=Vasiliou|first19=V|last20=Yamamoto|first20=TT|title=Revised nomenclature for the mammalian long-chain acyl-CoA synthetase gene family.|journal=Journal of Lipid Research|date=October 2004|volume=45|issue=10|pages=1958–61|pmid=15292367|doi=10.1194/jlr.e400002-jlr200}}</ref> The role of the ACOT- family of enzymes is not well understood; however, it has been suggested that they play a crucial role in regulating the intracellular levels of CoA esters, Coenzyme A, and free fatty acids. Recent studies have shown that Acyl-CoA esters have many more functions than simply an energy source. These functions include [[allosteric regulation]] of enzymes such as [[acetyl-CoA carboxylase]],<ref>{{cite journal|last1=Ogiwara|first1=H|last2=Tanabe|first2=T|last3=Nikawa|first3=J|last4=Numa|first4=S|title=Inhibition of rat-liver acetyl-coenzyme-A carboxylase by palmitoyl-coenzyme A. Formation of equimolar enzyme-inhibitor complex.|journal=European Journal of Biochemistry / FEBS|date=15 August 1978|volume=89|issue=1|pages=33–41|pmid=29756|doi=10.1111/j.1432-1033.1978.tb20893.x}}</ref> [[hexokinase]] IV,<ref>{{cite journal|last1=Srere|first1=PA|title=Palmityl-coenzyme A inhibition of the citrate-condensing enzyme.|journal=Biochimica et Biophysica Acta|date=2 December 1965|volume=106|issue=3|pages=445–55|pmid=5881327|doi=10.1016/0005-2760(65)90061-5}}</ref> and the citrate condensing enzyme. Long-chain acyl-CoAs also regulate opening of [[ATP-sensitive potassium channel]]s and activation of [[Calcium ATPase]]s, thereby regulating [[insulin]] secretion.<ref>{{cite journal|last1=Gribble|first1=FM|last2=Proks|first2=P|last3=Corkey|first3=BE|last4=Ashcroft|first4=FM|title=Mechanism of cloned ATP-sensitive potassium channel activation by oleoyl-CoA.|journal=The Journal of Biological Chemistry|date=9 October 1998|volume=273|issue=41|pages=26383–7|pmid=9756869|doi=10.1074/jbc.273.41.26383}}</ref> A number of other cellular events are also mediated via acyl-CoAs, for example signal transduction through [[protein kinase C]], inhibition of [[retinoic acid]]-induced apoptosis, and involvement in budding and fusion of the [[endomembrane system]].<ref>{{cite journal|last1=Nishizuka|first1=Y|title=Protein kinase C and lipid signaling for sustained cellular responses.|journal=FASEB Journal|date=April 1995|volume=9|issue=7|pages=484–96|pmid=7737456}}</ref><ref>{{cite journal|last1=Glick|first1=BS|last2=Rothman|first2=JE|title=Possible role for fatty acyl-coenzyme A in intracellular protein transport.|journal=Nature|volume=326|issue=6110|pages=309–12|pmid=3821906|doi=10.1038/326309a0|year=1987}}</ref><ref>{{cite journal|last1=Wan|first1=YJ|last2=Cai|first2=Y|last3=Cowan|first3=C|last4=Magee|first4=TR|title=Fatty acyl-CoAs inhibit retinoic acid-induced apoptosis in Hep3B cells.|journal=Cancer Letters|date=1 June 2000|volume=154|issue=1|pages=19–27|pmid=10799735|doi=10.1016/s0304-3835(00)00341-4}}</ref> Acyl-CoAs also mediate protein targeting to various membranes and regulation of [[G Protein]] α subunits, because they are substrates for protein acylation.<ref>{{cite journal|last1=Duncan|first1=JA|last2=Gilman|first2=AG|title=A cytoplasmic acyl-protein thioesterase that removes palmitate from G protein alpha subunits and p21(RAS).|journal=The Journal of Biological Chemistry|date=19 June 1998|volume=273|issue=25|pages=15830–7|pmid=9624183|doi=10.1074/jbc.273.25.15830}}</ref> In the [[mitochondria]], acyl-CoA esters are involved in the acylation of mitochondrial NAD+ dependent [[dehydrogenase]]s; because these enzymes are responsible for [[Amino acid#Catabolism|amino acid catabolism]], this acylation renders the whole process inactive. This mechanism may provide metabolic crosstalk and act to regulate the [[NADH]]/NAD+ ratio in order to maintain optimal mitochondrial [[beta oxidation]] of fatty acids.<ref>{{cite journal|last1=Berthiaume|first1=L|last2=Deichaite|first2=I|last3=Peseckis|first3=S|last4=Resh|first4=MD|title=Regulation of enzymatic activity by active site fatty acylation. A new role for long chain fatty acid acylation of proteins.|journal=The Journal of Biological Chemistry|date=4 March 1994|volume=269|issue=9|pages=6498–505|pmid=8120000}}</ref> The role of CoA esters in [[lipid metabolism]] and numerous other intracellular processes are well defined, and thus it is hypothesized that ACOT- enzymes play a role in modulating the processes these metabolites are involved in.<ref>{{cite journal|last1=Hunt|first1=MC|last2=Alexson|first2=SE|title=The role Acyl-CoA thioesterases play in mediating intracellular lipid metabolism.|journal=Progress in Lipid Research|date=March 2002|volume=41|issue=2|pages=99–130|pmid=11755680|doi=10.1016/s0163-7827(01)00017-0}}</ref>
 
== References ==
{{reflist}}
 
==External links==
* {{UCSC gene info|ACOT2}}
 
== Further reading ==
{{refbegin | 2}}
{{refbegin | 2}}
{{PBB_Further_reading
* {{cite journal | vauthors = Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O'Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams SL, Moran MF, Morin GB, Topaloglou T, Figeys D | title = Large-scale mapping of human protein-protein interactions by mass spectrometry | journal = Molecular Systems Biology | volume = 3 | issue = 1 | pages = 89 | year = 2007 | pmid = 17353931 | pmc = 1847948 | doi = 10.1038/msb4100134 }}
| citations =
* {{cite journal | vauthors = Hunt MC, Rautanen A, Westin MA, Svensson LT, Alexson SE | title = Analysis of the mouse and human acyl-CoA thioesterase (ACOT) gene clusters shows that convergent, functional evolution results in a reduced number of human peroxisomal ACOTs | journal = FASEB Journal | volume = 20 | issue = 11 | pages = 1855–64 | date = Sep 2006 | pmid = 16940157 | doi = 10.1096/fj.06-6042com }}
*{{cite journal | author=Ewing RM, Chu P, Elisma F, ''et al.'' |title=Large-scale mapping of human protein-protein interactions by mass spectrometry. |journal=Mol. Syst. Biol. |volume=3 |issue= |pages= 89 |year= 2007 |pmid= 17353931 |doi= 10.1038/msb4100134 }}
* {{cite journal | vauthors = Hunt MC, Yamada J, Maltais LJ, Wright MW, Podesta EJ, Alexson SE | title = A revised nomenclature for mammalian acyl-CoA thioesterases/hydrolases | journal = Journal of Lipid Research | volume = 46 | issue = 9 | pages = 2029–32 | date = Sep 2005 | pmid = 16103133 | doi = 10.1194/jlr.E500003-JLR200 }}
*{{cite journal | author=Hunt MC, Rautanen A, Westin MA, ''et al.'' |title=Analysis of the mouse and human acyl-CoA thioesterase (ACOT) gene clusters shows that convergent, functional evolution results in a reduced number of human peroxisomal ACOTs. |journal=FASEB J. |volume=20 |issue= 11 |pages= 1855-64 |year= 2006 |pmid= 16940157 |doi= 10.1096/fj.06-6042com }}
* {{cite journal | vauthors = Westin MA, Alexson SE, Hunt MC | title = Molecular cloning and characterization of two mouse peroxisome proliferator-activated receptor alpha (PPARalpha)-regulated peroxisomal acyl-CoA thioesterases | journal = The Journal of Biological Chemistry | volume = 279 | issue = 21 | pages = 21841–8 | date = May 2004 | pmid = 15007068 | doi = 10.1074/jbc.M313863200 }}
*{{cite journal | author=Hunt MC, Yamada J, Maltais LJ, ''et al.'' |title=A revised nomenclature for mammalian acyl-CoA thioesterases/hydrolases. |journal=J. Lipid Res. |volume=46 |issue= 9 |pages= 2029-32 |year= 2005 |pmid= 16103133 |doi= 10.1194/jlr.E500003-JLR200 }}
* {{cite journal | vauthors = Gevaert K, Goethals M, Martens L, Van Damme J, Staes A, Thomas GR, Vandekerckhove J | title = Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides | journal = Nature Biotechnology | volume = 21 | issue = 5 | pages = 566–9 | date = May 2003 | pmid = 12665801 | doi = 10.1038/nbt810 }}
*{{cite journal | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121-7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}
* {{cite journal | vauthors = Jones JM, Gould SJ | title = Identification of PTE2, a human peroxisomal long-chain acyl-CoA thioesterase | journal = Biochemical and Biophysical Research Communications | volume = 275 | issue = 1 | pages = 233–40 | date = Aug 2000 | pmid = 10944470 | doi = 10.1006/bbrc.2000.3285 }}
*{{cite journal  | author=Westin MA, Alexson SE, Hunt MC |title=Molecular cloning and characterization of two mouse peroxisome proliferator-activated receptor alpha (PPARalpha)-regulated peroxisomal acyl-CoA thioesterases. |journal=J. Biol. Chem. |volume=279 |issue= 21 |pages= 21841-8 |year= 2004 |pmid= 15007068 |doi= 10.1074/jbc.M313863200 }}
* {{cite journal | vauthors = Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S | title = Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library | journal = Gene | volume = 200 | issue = 1-2 | pages = 149–56 | date = Oct 1997 | pmid = 9373149 | doi = 10.1016/S0378-1119(97)00411-3 }}
*{{cite journal | author=Ota T, Suzuki Y, Nishikawa T, ''et al.'' |title=Complete sequencing and characterization of 21,243 full-length human cDNAs. |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40-5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 }}
* {{cite journal | vauthors = Maruyama K, Sugano S | title = Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides | journal = Gene | volume = 138 | issue = 1-2 | pages = 171–4 | date = Jan 1994 | pmid = 8125298 | doi = 10.1016/0378-1119(94)90802-8 }}
*{{cite journal  | author=Gevaert K, Goethals M, Martens L, ''et al.'' |title=Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides. |journal=Nat. Biotechnol. |volume=21 |issue= 5 |pages= 566-9 |year= 2004 |pmid= 12665801 |doi= 10.1038/nbt810 }}
* {{cite journal | vauthors = Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, Tsuda T, Mar L, Foncin JF, Bruni AC, Montesi MP, Sorbi S, Rainero I, Pinessi L, Nee L, Chumakov I, Pollen D, Brookes A, Sanseau P, Polinsky RJ, Wasco W, Da Silva HA, Haines JL, Perkicak-Vance MA, Tanzi RE, Roses AD, Fraser PE, Rommens JM, St George-Hyslop PH | title = Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease | journal = Nature | volume = 375 | issue = 6534 | pages = 754–60 | date = Jun 1995 | pmid = 7596406 | doi = 10.1038/375754a0 }}
*{{cite journal | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899-903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}
*{{cite journal  | author=Jones JM, Gould SJ |title=Identification of PTE2, a human peroxisomal long-chain acyl-CoA thioesterase. |journal=Biochem. Biophys. Res. Commun. |volume=275 |issue= 1 |pages= 233-40 |year= 2000 |pmid= 10944470 |doi= 10.1006/bbrc.2000.3285 }}
*{{cite journal | author=Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, ''et al.'' |title=Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library. |journal=Gene |volume=200 |issue= 1-2 |pages= 149-56 |year= 1997 |pmid= 9373149 |doi= }}
*{{cite journal | author=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. |journal=Gene |volume=138 |issue= 1-2 |pages= 171-4 |year= 1994 |pmid= 8125298 |doi= }}
*{{cite journal | author=Sherrington R, Rogaev EI, Liang Y, ''et al.'' |title=Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. |journal=Nature |volume=375 |issue= 6534 |pages= 754-60 |year= 1995 |pmid= 7596406 |doi= 10.1038/375754a0 }}
}}
{{refend}}
{{refend}}


{{protein-stub}}
{{Thioesterases}}
{{WikiDoc Sources}}
 
[[Category:Human proteins]]

Latest revision as of 02:23, 14 November 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Acyl-CoA thioesterase 2, also known as ACOT2, is an enzyme which in humans is encoded by the ACOT2 gene.[1][2][3]

Acyl-CoA thioesterases, such as ACOT2, are a group of enzymes that hydrolyze Coenzyme A (CoA) esters, such as acyl-CoAs, bile CoAs, and CoA esters of prostaglandins, to the corresponding free acid and CoA.[4] ACOT2 shows high acyl-CoA thioesterase activity on medium- and long-chain acyl-CoAs, with an optimal pH of 8.5. It is most active on myristoyl-CoA but also shows high activity on palmitoyl-CoA, stearoyl-CoA, and arachidoyl-CoA.[2]

Function

The protein encoded by the ACOT2 gene is part of a family of Acyl-CoA thioesterases, which catalyze the hydrolysis of various Coenzyme A esters of various molecules to the free acid plus CoA. These enzymes have also been referred to in the literature as acyl-CoA hydrolases, acyl-CoA thioester hydrolases, and palmitoyl-CoA hydrolases. The reaction carried out by these enzymes is as follows:

CoA ester + H2O → free acid + coenzyme A

These enzymes use the same substrates as long-chain acyl-CoA synthetases, but have a unique purpose in that they generate the free acid and CoA, as opposed to long-chain acyl-CoA synthetases, which ligate fatty acids to CoA, to produce the CoA ester.[5] The role of the ACOT- family of enzymes is not well understood; however, it has been suggested that they play a crucial role in regulating the intracellular levels of CoA esters, Coenzyme A, and free fatty acids. Recent studies have shown that Acyl-CoA esters have many more functions than simply an energy source. These functions include allosteric regulation of enzymes such as acetyl-CoA carboxylase,[6] hexokinase IV,[7] and the citrate condensing enzyme. Long-chain acyl-CoAs also regulate opening of ATP-sensitive potassium channels and activation of Calcium ATPases, thereby regulating insulin secretion.[8] A number of other cellular events are also mediated via acyl-CoAs, for example signal transduction through protein kinase C, inhibition of retinoic acid-induced apoptosis, and involvement in budding and fusion of the endomembrane system.[9][10][11] Acyl-CoAs also mediate protein targeting to various membranes and regulation of G Protein α subunits, because they are substrates for protein acylation.[12] In the mitochondria, acyl-CoA esters are involved in the acylation of mitochondrial NAD+ dependent dehydrogenases; because these enzymes are responsible for amino acid catabolism, this acylation renders the whole process inactive. This mechanism may provide metabolic crosstalk and act to regulate the NADH/NAD+ ratio in order to maintain optimal mitochondrial beta oxidation of fatty acids.[13] The role of CoA esters in lipid metabolism and numerous other intracellular processes are well defined, and thus it is hypothesized that ACOT- enzymes play a role in modulating the processes these metabolites are involved in.[14]

References

  1. "Entrez Gene: ACOT2 acyl-CoA thioesterase 2".
  2. 2.0 2.1 Jones JM, Gould SJ (Aug 2000). "Identification of PTE2, a human peroxisomal long-chain acyl-CoA thioesterase". Biochemical and Biophysical Research Communications. 275 (1): 233–40. doi:10.1006/bbrc.2000.3285. PMID 10944470.
  3. Hunt MC, Rautanen A, Westin MA, Svensson LT, Alexson SE (Sep 2006). "Analysis of the mouse and human acyl-CoA thioesterase (ACOT) gene clusters shows that convergent, functional evolution results in a reduced number of human peroxisomal ACOTs". FASEB Journal. 20 (11): 1855–64. doi:10.1096/fj.06-6042com. PMID 16940157.
  4. Hunt MC, Yamada J, Maltais LJ, Wright MW, Podesta EJ, Alexson SE (Sep 2005). "A revised nomenclature for mammalian acyl-CoA thioesterases/hydrolases". Journal of Lipid Research. 46 (9): 2029–32. doi:10.1194/jlr.E500003-JLR200. PMID 16103133.
  5. Mashek, DG; Bornfeldt, KE; Coleman, RA; Berger, J; Bernlohr, DA; Black, P; DiRusso, CC; Farber, SA; Guo, W; Hashimoto, N; Khodiyar, V; Kuypers, FA; Maltais, LJ; Nebert, DW; Renieri, A; Schaffer, JE; Stahl, A; Watkins, PA; Vasiliou, V; Yamamoto, TT (October 2004). "Revised nomenclature for the mammalian long-chain acyl-CoA synthetase gene family". Journal of Lipid Research. 45 (10): 1958–61. doi:10.1194/jlr.e400002-jlr200. PMID 15292367.
  6. Ogiwara, H; Tanabe, T; Nikawa, J; Numa, S (15 August 1978). "Inhibition of rat-liver acetyl-coenzyme-A carboxylase by palmitoyl-coenzyme A. Formation of equimolar enzyme-inhibitor complex". European Journal of Biochemistry / FEBS. 89 (1): 33–41. doi:10.1111/j.1432-1033.1978.tb20893.x. PMID 29756.
  7. Srere, PA (2 December 1965). "Palmityl-coenzyme A inhibition of the citrate-condensing enzyme". Biochimica et Biophysica Acta. 106 (3): 445–55. doi:10.1016/0005-2760(65)90061-5. PMID 5881327.
  8. Gribble, FM; Proks, P; Corkey, BE; Ashcroft, FM (9 October 1998). "Mechanism of cloned ATP-sensitive potassium channel activation by oleoyl-CoA". The Journal of Biological Chemistry. 273 (41): 26383–7. doi:10.1074/jbc.273.41.26383. PMID 9756869.
  9. Nishizuka, Y (April 1995). "Protein kinase C and lipid signaling for sustained cellular responses". FASEB Journal. 9 (7): 484–96. PMID 7737456.
  10. Glick, BS; Rothman, JE (1987). "Possible role for fatty acyl-coenzyme A in intracellular protein transport". Nature. 326 (6110): 309–12. doi:10.1038/326309a0. PMID 3821906.
  11. Wan, YJ; Cai, Y; Cowan, C; Magee, TR (1 June 2000). "Fatty acyl-CoAs inhibit retinoic acid-induced apoptosis in Hep3B cells". Cancer Letters. 154 (1): 19–27. doi:10.1016/s0304-3835(00)00341-4. PMID 10799735.
  12. Duncan, JA; Gilman, AG (19 June 1998). "A cytoplasmic acyl-protein thioesterase that removes palmitate from G protein alpha subunits and p21(RAS)". The Journal of Biological Chemistry. 273 (25): 15830–7. doi:10.1074/jbc.273.25.15830. PMID 9624183.
  13. Berthiaume, L; Deichaite, I; Peseckis, S; Resh, MD (4 March 1994). "Regulation of enzymatic activity by active site fatty acylation. A new role for long chain fatty acid acylation of proteins". The Journal of Biological Chemistry. 269 (9): 6498–505. PMID 8120000.
  14. Hunt, MC; Alexson, SE (March 2002). "The role Acyl-CoA thioesterases play in mediating intracellular lipid metabolism". Progress in Lipid Research. 41 (2): 99–130. doi:10.1016/s0163-7827(01)00017-0. PMID 11755680.

External links

Further reading

  • Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O'Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams SL, Moran MF, Morin GB, Topaloglou T, Figeys D (2007). "Large-scale mapping of human protein-protein interactions by mass spectrometry". Molecular Systems Biology. 3 (1): 89. doi:10.1038/msb4100134. PMC 1847948. PMID 17353931.
  • Hunt MC, Rautanen A, Westin MA, Svensson LT, Alexson SE (Sep 2006). "Analysis of the mouse and human acyl-CoA thioesterase (ACOT) gene clusters shows that convergent, functional evolution results in a reduced number of human peroxisomal ACOTs". FASEB Journal. 20 (11): 1855–64. doi:10.1096/fj.06-6042com. PMID 16940157.
  • Hunt MC, Yamada J, Maltais LJ, Wright MW, Podesta EJ, Alexson SE (Sep 2005). "A revised nomenclature for mammalian acyl-CoA thioesterases/hydrolases". Journal of Lipid Research. 46 (9): 2029–32. doi:10.1194/jlr.E500003-JLR200. PMID 16103133.
  • Westin MA, Alexson SE, Hunt MC (May 2004). "Molecular cloning and characterization of two mouse peroxisome proliferator-activated receptor alpha (PPARalpha)-regulated peroxisomal acyl-CoA thioesterases". The Journal of Biological Chemistry. 279 (21): 21841–8. doi:10.1074/jbc.M313863200. PMID 15007068.
  • Gevaert K, Goethals M, Martens L, Van Damme J, Staes A, Thomas GR, Vandekerckhove J (May 2003). "Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides". Nature Biotechnology. 21 (5): 566–9. doi:10.1038/nbt810. PMID 12665801.
  • Jones JM, Gould SJ (Aug 2000). "Identification of PTE2, a human peroxisomal long-chain acyl-CoA thioesterase". Biochemical and Biophysical Research Communications. 275 (1): 233–40. doi:10.1006/bbrc.2000.3285. PMID 10944470.
  • Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S (Oct 1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library". Gene. 200 (1–2): 149–56. doi:10.1016/S0378-1119(97)00411-3. PMID 9373149.
  • Maruyama K, Sugano S (Jan 1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene. 138 (1–2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID 8125298.
  • Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, Tsuda T, Mar L, Foncin JF, Bruni AC, Montesi MP, Sorbi S, Rainero I, Pinessi L, Nee L, Chumakov I, Pollen D, Brookes A, Sanseau P, Polinsky RJ, Wasco W, Da Silva HA, Haines JL, Perkicak-Vance MA, Tanzi RE, Roses AD, Fraser PE, Rommens JM, St George-Hyslop PH (Jun 1995). "Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease". Nature. 375 (6534): 754–60. doi:10.1038/375754a0. PMID 7596406.