Arrestin beta 1: Difference between revisions

Jump to navigation Jump to search
WikiBot (talk | contribs)
m Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}})
 
m Bot: HTTP→HTTPS (v470)
 
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''Arrestin, beta 1''', also known as '''ARRB1''', is a [[protein]] which in humans is encoded by the ''ARRB1'' [[gene]].<ref name="pmid8486659">{{cite journal |vauthors=Parruti G, Peracchia F, Sallese M, Ambrosini G, Masini M, Rotilio D, De Blasi A | title = Molecular analysis of human beta-arrestin-1: cloning, tissue distribution, and regulation of expression. Identification of two isoforms generated by alternative splicing | journal = The Journal of Biological Chemistry | volume = 268 | issue = 13 | pages = 9753–61 |date=May 1993 | pmid = 8486659 | doi = | url = http://www.jbc.org/cgi/reprint/268/13/9753 }}</ref><ref name = "entrez">{{cite web | title = Entrez Gene: ARRB1 arrestin, beta 1| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=408| accessdate = }}</ref>
| update_page = yes
 
| require_manual_inspection = no
== Function ==
| update_protein_box = yes
 
| update_summary = yes
Members of [[arrestin]]/beta-arrestin protein family are thought to participate in agonist-mediated desensitization of [[G protein-coupled receptor]]s and cause specific dampening of cellular responses to stimuli such as hormones, neurotransmitters, or sensory signals.  Arrestin beta 1 is a [[cytosol]]ic protein and acts as a cofactor in the beta-adrenergic receptor kinase ([[Beta adrenergic receptor kinase|BARK]]) mediated desensitization of [[adrenergic receptor|beta-adrenergic receptor]]s.  Besides the central nervous system, it is expressed at high levels in  peripheral blood leukocytes, and thus the BARK/beta-arrestin system is believed to play a major role in regulating receptor-mediated immune functions.  Alternatively spliced transcripts encoding different isoforms of arrestin beta 1 have been described, however, their exact functions are not known.<ref name = "entrez"/>
| update_citations = yes
Beta-arrestin might also play a role as scaffold protein in the GPCR pathways.{{citation needed|date=December 2012}}
}}
 
== Interactions ==


<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
Arrestin beta 1 has been shown to [[Protein-protein interaction|interact]] with
{{GNF_Protein_box
* [[Arf6]],<ref name="pmid11533043">{{cite journal |vauthors=Claing A, Chen W, Miller WE, Vitale N, Moss J, Premont RT, Lefkowitz RJ | title = beta-Arrestin-mediated ADP-ribosylation factor 6 activation and beta 2-adrenergic receptor endocytosis | journal = J. Biol. Chem. | volume = 276 | issue = 45 | pages = 42509–13 |date=November 2001 | pmid = 11533043 | doi = 10.1074/jbc.M108399200 }}</ref>
| image = PBB_Protein_ARRB1_image.jpg
* [[Parathyroid hormone-related protein|PTHLH]],<ref name="pmid12220636">{{cite journal |vauthors=Conlan LA, Martin TJ, Gillespie MT | title = The COOH-terminus of parathyroid hormone-related protein (PTHrP) interacts with beta-arrestin 1B | journal = FEBS Lett. | volume = 527 | issue = 1–3 | pages = 71–5 |date=September 2002 | pmid = 12220636 | doi = 10.1016/S0014-5793(02)03164-2 }}</ref>
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 1g4m.
* [[DVL2]]<ref name="pmid11742073">{{cite journal |vauthors=Chen W, Hu LA, Semenov MV, Yanagawa S, Kikuchi A, Lefkowitz RJ, Miller WE | title = beta-Arrestin1 modulates lymphoid enhancer factor transcriptional activity through interaction with phosphorylated dishevelled proteins | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 98 | issue = 26 | pages = 14889–94 |date=December 2001 | pmid = 11742073 | pmc = 64954 | doi = 10.1073/pnas.211572798 }}</ref>
| PDB = {{PDB2|1g4m}}, {{PDB2|1g4r}}, {{PDB2|1jsy}}, {{PDB2|1zsh}}
* [[Mdm2]],<ref name="pmid12538596">{{cite journal |vauthors=Wang P, Wu Y, Ge X, Ma L, Pei G | title = Subcellular localization of beta-arrestins is determined by their intact N domain and the nuclear export signal at the C terminus | journal = J. Biol. Chem. | volume = 278 | issue = 13 | pages = 11648–53 |date=March 2003 | pmid = 12538596 | doi = 10.1074/jbc.M208109200 }}</ref><ref name="pmid18544533">{{cite journal |vauthors=Shenoy SK, Xiao K, Venkataramanan V, Snyder PM, Freedman NJ, Weissman AM | title = Nedd4 mediates agonist-dependent ubiquitination, lysosomal targeting, and degradation of the beta2-adrenergic receptor | journal = J. Biol. Chem. | volume = 283 | issue = 32 | pages = 22166–76 |date=August 2008 | pmid = 18544533 | pmc = 2494938 | doi = 10.1074/jbc.M709668200 }}</ref>
| Name = Arrestin, beta 1
* [[Delta Opioid receptor|OPRD1]],<ref name="pmid11259507">{{cite journal |vauthors=Cen B, Yu Q, Guo J, Wu Y, Ling K, Cheng Z, Ma L, Pei G | title = Direct binding of beta-arrestins to two distinct intracellular domains of the delta opioid receptor | journal = J. Neurochem. | volume = 76 | issue = 6 | pages = 1887–94 |date=March 2001 | pmid = 11259507 | doi = 10.1046/j.1471-4159.2001.00204.x }}</ref>
| HGNCid = 711
* [[PSCD2]],<ref name=pmid11533043/> and
| Symbol = ARRB1
* [[RALGDS]].<ref name="pmid12105416">{{cite journal |vauthors=Bhattacharya M, Anborgh PH, Babwah AV, Dale LB, Dobransky T, Benovic JL, Feldman RD, Verdi JM, Rylett RJ, Ferguson SS | title = Beta-arrestins regulate a Ral-GDS Ral effector pathway that mediates cytoskeletal reorganization | journal = Nat. Cell Biol. | volume = 4 | issue = 8 | pages = 547–55 |date=August 2002 | pmid = 12105416 | doi = 10.1038/ncb821 | url = }}</ref>
| AltSymbols =; ARB1; ARR1
| OMIM = 107940
| ECnumber =
| Homologene = 2981
| MGIid = 99473
| GeneAtlas_image1 = PBB_GE_ARRB1_218832_x_at_tn.png
| Function = {{GNF_GO|id=GO:0004857 |text = enzyme inhibitor activity}} {{GNF_GO|id=GO:0005515 |text = protein binding}}
| Component = {{GNF_GO|id=GO:0005622 |text = intracellular}} {{GNF_GO|id=GO:0005624 |text = membrane fraction}} {{GNF_GO|id=GO:0005625 |text = soluble fraction}} {{GNF_GO|id=GO:0005737 |text = cytoplasm}} {{GNF_GO|id=GO:0005834 |text = heterotrimeric G-protein complex}} {{GNF_GO|id=GO:0005886 |text = plasma membrane}}  
| Process = {{GNF_GO|id=GO:0007165 |text = signal transduction}} {{GNF_GO|id=GO:0007600 |text = sensory perception}} {{GNF_GO|id=GO:0008277 |text = regulation of G-protein coupled receptor protein signaling pathway}} {{GNF_GO|id=GO:0050896 |text = response to stimulus}}  
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 408
    | Hs_Ensembl = ENSG00000137486
    | Hs_RefseqProtein = NP_004032
    | Hs_RefseqmRNA = NM_004041
    | Hs_GenLoc_db =
    | Hs_GenLoc_chr = 11
    | Hs_GenLoc_start = 74654130
    | Hs_GenLoc_end = 74740521
    | Hs_Uniprot = P49407
    | Mm_EntrezGene = 109689
    | Mm_Ensembl = ENSMUSG00000018909
    | Mm_RefseqmRNA = NM_177231
    | Mm_RefseqProtein = NP_796205
    | Mm_GenLoc_db =
    | Mm_GenLoc_chr = 7
    | Mm_GenLoc_start = 99409569
    | Mm_GenLoc_end = 99480854
    | Mm_Uniprot = Q8BWG8
  }}
}}
'''Arrestin, beta 1''', also known as '''ARRB1''', is a human [[gene]].<ref>{{cite web | title = Entrez Gene: ARRB1 arrestin, beta 1| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=408| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
== References ==
{{PBB_Summary
{{Reflist}}
| section_title =  
| summary_text = Members of arrestin/beta-arrestin protein family are thought to participate in agonist-mediated desensitization of G-protein-coupled receptors and cause specific dampening of cellular responses to stimuli such as hormones, neurotransmitters, or sensory signals.  Arrestin beta 1 is a cytosolic protein and acts as a cofactor in the beta-adrenergic receptor kinase (BARK) mediated desensitization of beta-adrenergic receptors.  Besides the central nervous system, it is expressed at high levels in  peripheral blood leukocytes, and thus the BARK/beta-arrestin system is believed to play a major role in regulating receptor-mediated immune functions.  Alternatively spliced transcripts encoding different isoforms of arrestin beta 1 have been described, however, their exact functions are not known.<ref>{{cite web | title = Entrez Gene: ARRB1 arrestin, beta 1| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=408| accessdate = }}</ref>
}}


==References==
{{reflist|2}}
==Further reading==
==Further reading==
{{refbegin | 2}}
{{Refbegin | 2}}
{{PBB_Further_reading
*{{cite journal  | author=Lefkowitz RJ |title=G protein-coupled receptors. III. New roles for receptor kinases and beta-arrestins in receptor signaling and desensitization |journal=J. Biol. Chem. |volume=273 |issue= 30 |pages= 18677–80 |year= 1998 |pmid= 9668034 |doi=10.1074/jbc.273.30.18677 }}
| citations =
*{{cite journal  |vauthors=Lohse MJ, Benovic JL, Codina J |title=beta-Arrestin: a protein that regulates beta-adrenergic receptor function |journal=Science |volume=248 |issue= 4962 |pages= 1547–50 |year= 1990 |pmid= 2163110 |doi=10.1126/science.2163110  |display-authors=etal}}
*{{cite journal  | author=Lefkowitz RJ |title=G protein-coupled receptors. III. New roles for receptor kinases and beta-arrestins in receptor signaling and desensitization. |journal=J. Biol. Chem. |volume=273 |issue= 30 |pages= 18677-80 |year= 1998 |pmid= 9668034 |doi=  }}
*{{cite journal  |vauthors=Calabrese G, Sallese M, Stornaiuolo A |title=Assignment of the beta-arrestin 1 gene (ARRB1) to human chromosome 11q13 |journal=Genomics |volume=24 |issue= 1 |pages= 169–71 |year= 1995 |pmid= 7896272 |doi= 10.1006/geno.1994.1594 |display-authors=etal}}
*{{cite journal  | author=Lohse MJ, Benovic JL, Codina J, ''et al.'' |title=beta-Arrestin: a protein that regulates beta-adrenergic receptor function. |journal=Science |volume=248 |issue= 4962 |pages= 1547-50 |year= 1990 |pmid= 2163110 |doi= }}
*{{cite journal  |vauthors=Parruti G, Peracchia F, Sallese M |title=Molecular analysis of human beta-arrestin-1: cloning, tissue distribution, and regulation of expression. Identification of two isoforms generated by alternative splicing |journal=J. Biol. Chem. |volume=268 |issue= 13 |pages= 9753–61 |year= 1993 |pmid= 8486659 |doi=  |display-authors=etal}}
*{{cite journal  | author=Calabrese G, Sallese M, Stornaiuolo A, ''et al.'' |title=Assignment of the beta-arrestin 1 gene (ARRB1) to human chromosome 11q13. |journal=Genomics |volume=24 |issue= 1 |pages= 169-71 |year= 1995 |pmid= 7896272 |doi= 10.1006/geno.1994.1594 }}
*{{cite journal  |vauthors=Iacovelli L, Franchetti R, Masini M, De Blasi A |title=GRK2 and beta-arrestin 1 as negative regulators of thyrotropin receptor-stimulated response |journal=Mol. Endocrinol. |volume=10 |issue= 9 |pages= 1138–46 |year= 1997 |pmid= 8885248 |doi=10.1210/me.10.9.1138 }}
*{{cite journal  | author=Parruti G, Peracchia F, Sallese M, ''et al.'' |title=Molecular analysis of human beta-arrestin-1: cloning, tissue distribution, and regulation of expression. Identification of two isoforms generated by alternative splicing. |journal=J. Biol. Chem. |volume=268 |issue= 13 |pages= 9753-61 |year= 1993 |pmid= 8486659 |doi=  }}
*{{cite journal  |vauthors=Bonaldo MF, Lennon G, Soares MB |title=Normalization and subtraction: two approaches to facilitate gene discovery |journal=Genome Res. |volume=6 |issue= 9 |pages= 791–806 |year= 1997 |pmid= 8889548 |doi=10.1101/gr.6.9.791 }}
*{{cite journal  | author=Iacovelli L, Franchetti R, Masini M, De Blasi A |title=GRK2 and beta-arrestin 1 as negative regulators of thyrotropin receptor-stimulated response. |journal=Mol. Endocrinol. |volume=10 |issue= 9 |pages= 1138-46 |year= 1997 |pmid= 8885248 |doi=  }}
*{{cite journal  |vauthors=Goodman OB, Krupnick JG, Gurevich VV |title=Arrestin/clathrin interaction. Localization of the arrestin binding locus to the clathrin terminal domain |journal=J. Biol. Chem. |volume=272 |issue= 23 |pages= 15017–22 |year= 1997 |pmid= 9169477 |doi=10.1074/jbc.272.23.15017 |display-authors=etal}}
*{{cite journal  | author=Bonaldo MF, Lennon G, Soares MB |title=Normalization and subtraction: two approaches to facilitate gene discovery. |journal=Genome Res. |volume=6 |issue= 9 |pages= 791-806 |year= 1997 |pmid= 8889548 |doi=  }}
*{{cite journal  |vauthors=Lin FT, Krueger KM, Kendall HE |title=Clathrin-mediated endocytosis of the beta-adrenergic receptor is regulated by phosphorylation/dephosphorylation of beta-arrestin1 |journal=J. Biol. Chem. |volume=272 |issue= 49 |pages= 31051–7 |year= 1998 |pmid= 9388255 |doi=10.1074/jbc.272.49.31051  |display-authors=etal}}
*{{cite journal  | author=Goodman OB, Krupnick JG, Gurevich VV, ''et al.'' |title=Arrestin/clathrin interaction. Localization of the arrestin binding locus to the clathrin terminal domain. |journal=J. Biol. Chem. |volume=272 |issue= 23 |pages= 15017-22 |year= 1997 |pmid= 9169477 |doi=  }}
*{{cite journal  |vauthors=Aragay AM, Mellado M, Frade JM |title=Monocyte chemoattractant protein-1-induced CCR2B receptor desensitization mediated by the G protein-coupled receptor kinase 2 |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=95 |issue= 6 |pages= 2985–90 |year= 1998 |pmid= 9501202 |doi=10.1073/pnas.95.6.2985 | pmc=19681  |display-authors=etal}}
*{{cite journal  | author=Lin FT, Krueger KM, Kendall HE, ''et al.'' |title=Clathrin-mediated endocytosis of the beta-adrenergic receptor is regulated by phosphorylation/dephosphorylation of beta-arrestin1. |journal=J. Biol. Chem. |volume=272 |issue= 49 |pages= 31051-7 |year= 1998 |pmid= 9388255 |doi= }}
*{{cite journal  |vauthors=ter Haar E, Musacchio A, Harrison SC, Kirchhausen T |title=Atomic structure of clathrin: a beta propeller terminal domain joins an alpha zigzag linker |journal=Cell |volume=95 |issue= 4 |pages= 563–73 |year= 1998 |pmid= 9827808 |doi=10.1016/S0092-8674(00)81623-2 }}
*{{cite journal  | author=Aragay AM, Mellado M, Frade JM, ''et al.'' |title=Monocyte chemoattractant protein-1-induced CCR2B receptor desensitization mediated by the G protein-coupled receptor kinase 2. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=95 |issue= 6 |pages= 2985-90 |year= 1998 |pmid= 9501202 |doi=  }}
*{{cite journal  |vauthors=Luttrell LM, Ferguson SS, Daaka Y |title=Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes |journal=Science |volume=283 |issue= 5402 |pages= 655–61 |year= 1999 |pmid= 9924018 |doi=10.1126/science.283.5402.655  |display-authors=etal}}
*{{cite journal  | author=ter Haar E, Musacchio A, Harrison SC, Kirchhausen T |title=Atomic structure of clathrin: a beta propeller terminal domain joins an alpha zigzag linker. |journal=Cell |volume=95 |issue= 4 |pages= 563-73 |year= 1998 |pmid= 9827808 |doi=  }}
*{{cite journal |vauthors=McDonald PH, Cote NL, Lin FT |title=Identification of NSF as a beta-arrestin1-binding protein. Implications for beta2-adrenergic receptor regulation |journal=J. Biol. Chem. |volume=274 |issue= 16 |pages= 10677–80 |year= 1999 |pmid= 10196135 |doi=10.1074/jbc.274.16.10677 |display-authors=etal}}
*{{cite journal  | author=Luttrell LM, Ferguson SS, Daaka Y, ''et al.'' |title=Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. |journal=Science |volume=283 |issue= 5402 |pages= 655-61 |year= 1999 |pmid= 9924018 |doi= }}
*{{cite journal  |vauthors=Lin FT, Miller WE, Luttrell LM, Lefkowitz RJ |title=Feedback regulation of beta-arrestin1 function by extracellular signal-regulated kinases |journal=J. Biol. Chem. |volume=274 |issue= 23 |pages= 15971–4 |year= 1999 |pmid= 10347142 |doi=10.1074/jbc.274.23.15971 }}
*{{cite journal | author=McDonald PH, Cote NL, Lin FT, ''et al.'' |title=Identification of NSF as a beta-arrestin1-binding protein. Implications for beta2-adrenergic receptor regulation. |journal=J. Biol. Chem. |volume=274 |issue= 16 |pages= 10677-80 |year= 1999 |pmid= 10196135 |doi=  }}
*{{cite journal  |vauthors=McConalogue K, Déry O, Lovett M |title=Substance P-induced trafficking of beta-arrestins. The role of beta-arrestins in endocytosis of the neurokinin-1 receptor |journal=J. Biol. Chem. |volume=274 |issue= 23 |pages= 16257–68 |year= 1999 |pmid= 10347182 |doi=10.1074/jbc.274.23.16257  |display-authors=etal}}
*{{cite journal  | author=Lin FT, Miller WE, Luttrell LM, Lefkowitz RJ |title=Feedback regulation of beta-arrestin1 function by extracellular signal-regulated kinases. |journal=J. Biol. Chem. |volume=274 |issue= 23 |pages= 15971-4 |year= 1999 |pmid= 10347142 |doi=  }}
*{{cite journal  |vauthors=Miller WE, Maudsley S, Ahn S |title=beta-arrestin1 interacts with the catalytic domain of the tyrosine kinase c-SRC. Role of beta-arrestin1-dependent targeting of c-SRC in receptor endocytosis |journal=J. Biol. Chem. |volume=275 |issue= 15 |pages= 11312–9 |year= 2000 |pmid= 10753943 |doi=10.1074/jbc.275.15.11312  |display-authors=etal}}
*{{cite journal  | author=McConalogue K, Déry O, Lovett M, ''et al.'' |title=Substance P-induced trafficking of beta-arrestins. The role of beta-arrestins in endocytosis of the neurokinin-1 receptor. |journal=J. Biol. Chem. |volume=274 |issue= 23 |pages= 16257-68 |year= 1999 |pmid= 10347182 |doi= }}
*{{cite journal  |vauthors=Laporte SA, Oakley RH, Holt JA |title=The interaction of beta-arrestin with the AP-2 adaptor is required for the clustering of beta 2-adrenergic receptor into clathrin-coated pits |journal=J. Biol. Chem. |volume=275 |issue= 30 |pages= 23120–6 |year= 2000 |pmid= 10770944 |doi= 10.1074/jbc.M002581200 |display-authors=etal}}
*{{cite journal  | author=Miller WE, Maudsley S, Ahn S, ''et al.'' |title=beta-arrestin1 interacts with the catalytic domain of the tyrosine kinase c-SRC. Role of beta-arrestin1-dependent targeting of c-SRC in receptor endocytosis. |journal=J. Biol. Chem. |volume=275 |issue= 15 |pages= 11312-9 |year= 2000 |pmid= 10753943 |doi= }}
*{{cite journal  |vauthors=Bennett TA, Maestas DC, Prossnitz ER |title=Arrestin binding to the G protein-coupled N-formyl peptide receptor is regulated by the conserved "DRY" sequence |journal=J. Biol. Chem. |volume=275 |issue= 32 |pages= 24590–4 |year= 2000 |pmid= 10823817 |doi= 10.1074/jbc.C000314200 }}
*{{cite journal  | author=Laporte SA, Oakley RH, Holt JA, ''et al.'' |title=The interaction of beta-arrestin with the AP-2 adaptor is required for the clustering of beta 2-adrenergic receptor into clathrin-coated pits. |journal=J. Biol. Chem. |volume=275 |issue= 30 |pages= 23120-6 |year= 2000 |pmid= 10770944 |doi= 10.1074/jbc.M002581200 }}
*{{cite journal  |vauthors=Shiina T, Kawasaki A, Nagao T, Kurose H |title=Interaction with beta-arrestin determines the difference in internalization behavor between beta1- and beta2-adrenergic receptors |journal=J. Biol. Chem. |volume=275 |issue= 37 |pages= 29082–90 |year= 2000 |pmid= 10862778 |doi= 10.1074/jbc.M909757199 }}
*{{cite journal  | author=Bennett TA, Maestas DC, Prossnitz ER |title=Arrestin binding to the G protein-coupled N-formyl peptide receptor is regulated by the conserved "DRY" sequence. |journal=J. Biol. Chem. |volume=275 |issue= 32 |pages= 24590-4 |year= 2000 |pmid= 10823817 |doi= 10.1074/jbc.C000314200 }}
*{{cite journal  |vauthors=Barlic J, Andrews JD, Kelvin AA |title=Regulation of tyrosine kinase activation and granule release through beta-arrestin by CXCRI |journal=Nat. Immunol. |volume=1 |issue= 3 |pages= 227–33 |year= 2001 |pmid= 10973280 |doi= 10.1038/79767 |display-authors=etal}}
*{{cite journal  | author=Shiina T, Kawasaki A, Nagao T, Kurose H |title=Interaction with beta-arrestin determines the difference in internalization behavor between beta1- and beta2-adrenergic receptors. |journal=J. Biol. Chem. |volume=275 |issue= 37 |pages= 29082-90 |year= 2000 |pmid= 10862778 |doi= 10.1074/jbc.M909757199 }}
{{Refend}}
*{{cite journal  | author=Barlic J, Andrews JD, Kelvin AA, ''et al.'' |title=Regulation of tyrosine kinase activation and granule release through beta-arrestin by CXCRI. |journal=Nat. Immunol. |volume=1 |issue= 3 |pages= 227-33 |year= 2001 |pmid= 10973280 |doi= 10.1038/79767 }}
*{{Cite journal
| pmid = 25043026
| year = 2014
| author1 = Shukla
| first1 = A. K.
| title = Visualization of arrestin recruitment by a G-protein-coupled receptor
| journal = Nature
| last2 = Westfield
| first2 = G. H.
| last3 = Xiao
| first3 = K
| last4 = Reis
| first4 = R. I.
| last5 = Huang
| first5 = L. Y.
| last6 = Tripathi-Shukla
| first6 = P
| last7 = Qian
| first7 = J
| last8 = Li
| first8 = S
| last9 = Blanc
| first9 = A
| last10 = Oleskie
| first10 = A. N.
| last11 = Dosey
| first11 = A. M.
| last12 = Su
| first12 = M
| last13 = Liang
| first13 = C. R.
| last14 = Gu
| first14 = L. L.
| last15 = Shan
| first15 = J. M.
| last16 = Chen
| first16 = X
| last17 = Hanna
| first17 = R
| last18 = Choi
| first18 = M
| last19 = Yao
| first19 = X. J.
| last20 = Klink
| first20 = B. U.
| last21 = Kahsai
| first21 = A. W.
| last22 = Sidhu
| first22 = S. S.
| last23 = Koide
| first23 = S
| last24 = Penczek
| first24 = P. A.
| last25 = Kossiakoff
| first25 = A. A.
| last26 = Woods Jr
| first26 = V. L.
| last27 = Kobilka
| first27 = B. K.
| last28 = Skiniotis
| first28 = G
| last29 = Lefkowitz
| first29 = R. J.
| doi = 10.1038/nature13430
| volume=512
| pages=218–22
| pmc=4134437
}}
}}
{{refend}}


{{protein-stub}}
==External links==
* {{UCSC gene info|ARRB1}}
{{PDB Gallery|geneid=408}}
{{Membrane proteins}}

Latest revision as of 01:35, 27 October 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Arrestin, beta 1, also known as ARRB1, is a protein which in humans is encoded by the ARRB1 gene.[1][2]

Function

Members of arrestin/beta-arrestin protein family are thought to participate in agonist-mediated desensitization of G protein-coupled receptors and cause specific dampening of cellular responses to stimuli such as hormones, neurotransmitters, or sensory signals. Arrestin beta 1 is a cytosolic protein and acts as a cofactor in the beta-adrenergic receptor kinase (BARK) mediated desensitization of beta-adrenergic receptors. Besides the central nervous system, it is expressed at high levels in peripheral blood leukocytes, and thus the BARK/beta-arrestin system is believed to play a major role in regulating receptor-mediated immune functions. Alternatively spliced transcripts encoding different isoforms of arrestin beta 1 have been described, however, their exact functions are not known.[2] Beta-arrestin might also play a role as scaffold protein in the GPCR pathways.[citation needed]

Interactions

Arrestin beta 1 has been shown to interact with

References

  1. Parruti G, Peracchia F, Sallese M, Ambrosini G, Masini M, Rotilio D, De Blasi A (May 1993). "Molecular analysis of human beta-arrestin-1: cloning, tissue distribution, and regulation of expression. Identification of two isoforms generated by alternative splicing". The Journal of Biological Chemistry. 268 (13): 9753–61. PMID 8486659.
  2. 2.0 2.1 "Entrez Gene: ARRB1 arrestin, beta 1".
  3. 3.0 3.1 Claing A, Chen W, Miller WE, Vitale N, Moss J, Premont RT, Lefkowitz RJ (November 2001). "beta-Arrestin-mediated ADP-ribosylation factor 6 activation and beta 2-adrenergic receptor endocytosis". J. Biol. Chem. 276 (45): 42509–13. doi:10.1074/jbc.M108399200. PMID 11533043.
  4. Conlan LA, Martin TJ, Gillespie MT (September 2002). "The COOH-terminus of parathyroid hormone-related protein (PTHrP) interacts with beta-arrestin 1B". FEBS Lett. 527 (1–3): 71–5. doi:10.1016/S0014-5793(02)03164-2. PMID 12220636.
  5. Chen W, Hu LA, Semenov MV, Yanagawa S, Kikuchi A, Lefkowitz RJ, Miller WE (December 2001). "beta-Arrestin1 modulates lymphoid enhancer factor transcriptional activity through interaction with phosphorylated dishevelled proteins". Proc. Natl. Acad. Sci. U.S.A. 98 (26): 14889–94. doi:10.1073/pnas.211572798. PMC 64954. PMID 11742073.
  6. Wang P, Wu Y, Ge X, Ma L, Pei G (March 2003). "Subcellular localization of beta-arrestins is determined by their intact N domain and the nuclear export signal at the C terminus". J. Biol. Chem. 278 (13): 11648–53. doi:10.1074/jbc.M208109200. PMID 12538596.
  7. Shenoy SK, Xiao K, Venkataramanan V, Snyder PM, Freedman NJ, Weissman AM (August 2008). "Nedd4 mediates agonist-dependent ubiquitination, lysosomal targeting, and degradation of the beta2-adrenergic receptor". J. Biol. Chem. 283 (32): 22166–76. doi:10.1074/jbc.M709668200. PMC 2494938. PMID 18544533.
  8. Cen B, Yu Q, Guo J, Wu Y, Ling K, Cheng Z, Ma L, Pei G (March 2001). "Direct binding of beta-arrestins to two distinct intracellular domains of the delta opioid receptor". J. Neurochem. 76 (6): 1887–94. doi:10.1046/j.1471-4159.2001.00204.x. PMID 11259507.
  9. Bhattacharya M, Anborgh PH, Babwah AV, Dale LB, Dobransky T, Benovic JL, Feldman RD, Verdi JM, Rylett RJ, Ferguson SS (August 2002). "Beta-arrestins regulate a Ral-GDS Ral effector pathway that mediates cytoskeletal reorganization". Nat. Cell Biol. 4 (8): 547–55. doi:10.1038/ncb821. PMID 12105416.

Further reading

  • Lefkowitz RJ (1998). "G protein-coupled receptors. III. New roles for receptor kinases and beta-arrestins in receptor signaling and desensitization". J. Biol. Chem. 273 (30): 18677–80. doi:10.1074/jbc.273.30.18677. PMID 9668034.
  • Lohse MJ, Benovic JL, Codina J, et al. (1990). "beta-Arrestin: a protein that regulates beta-adrenergic receptor function". Science. 248 (4962): 1547–50. doi:10.1126/science.2163110. PMID 2163110.
  • Calabrese G, Sallese M, Stornaiuolo A, et al. (1995). "Assignment of the beta-arrestin 1 gene (ARRB1) to human chromosome 11q13". Genomics. 24 (1): 169–71. doi:10.1006/geno.1994.1594. PMID 7896272.
  • Parruti G, Peracchia F, Sallese M, et al. (1993). "Molecular analysis of human beta-arrestin-1: cloning, tissue distribution, and regulation of expression. Identification of two isoforms generated by alternative splicing". J. Biol. Chem. 268 (13): 9753–61. PMID 8486659.
  • Iacovelli L, Franchetti R, Masini M, De Blasi A (1997). "GRK2 and beta-arrestin 1 as negative regulators of thyrotropin receptor-stimulated response". Mol. Endocrinol. 10 (9): 1138–46. doi:10.1210/me.10.9.1138. PMID 8885248.
  • Bonaldo MF, Lennon G, Soares MB (1997). "Normalization and subtraction: two approaches to facilitate gene discovery". Genome Res. 6 (9): 791–806. doi:10.1101/gr.6.9.791. PMID 8889548.
  • Goodman OB, Krupnick JG, Gurevich VV, et al. (1997). "Arrestin/clathrin interaction. Localization of the arrestin binding locus to the clathrin terminal domain". J. Biol. Chem. 272 (23): 15017–22. doi:10.1074/jbc.272.23.15017. PMID 9169477.
  • Lin FT, Krueger KM, Kendall HE, et al. (1998). "Clathrin-mediated endocytosis of the beta-adrenergic receptor is regulated by phosphorylation/dephosphorylation of beta-arrestin1". J. Biol. Chem. 272 (49): 31051–7. doi:10.1074/jbc.272.49.31051. PMID 9388255.
  • Aragay AM, Mellado M, Frade JM, et al. (1998). "Monocyte chemoattractant protein-1-induced CCR2B receptor desensitization mediated by the G protein-coupled receptor kinase 2". Proc. Natl. Acad. Sci. U.S.A. 95 (6): 2985–90. doi:10.1073/pnas.95.6.2985. PMC 19681. PMID 9501202.
  • ter Haar E, Musacchio A, Harrison SC, Kirchhausen T (1998). "Atomic structure of clathrin: a beta propeller terminal domain joins an alpha zigzag linker". Cell. 95 (4): 563–73. doi:10.1016/S0092-8674(00)81623-2. PMID 9827808.
  • Luttrell LM, Ferguson SS, Daaka Y, et al. (1999). "Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes". Science. 283 (5402): 655–61. doi:10.1126/science.283.5402.655. PMID 9924018.
  • McDonald PH, Cote NL, Lin FT, et al. (1999). "Identification of NSF as a beta-arrestin1-binding protein. Implications for beta2-adrenergic receptor regulation". J. Biol. Chem. 274 (16): 10677–80. doi:10.1074/jbc.274.16.10677. PMID 10196135.
  • Lin FT, Miller WE, Luttrell LM, Lefkowitz RJ (1999). "Feedback regulation of beta-arrestin1 function by extracellular signal-regulated kinases". J. Biol. Chem. 274 (23): 15971–4. doi:10.1074/jbc.274.23.15971. PMID 10347142.
  • McConalogue K, Déry O, Lovett M, et al. (1999). "Substance P-induced trafficking of beta-arrestins. The role of beta-arrestins in endocytosis of the neurokinin-1 receptor". J. Biol. Chem. 274 (23): 16257–68. doi:10.1074/jbc.274.23.16257. PMID 10347182.
  • Miller WE, Maudsley S, Ahn S, et al. (2000). "beta-arrestin1 interacts with the catalytic domain of the tyrosine kinase c-SRC. Role of beta-arrestin1-dependent targeting of c-SRC in receptor endocytosis". J. Biol. Chem. 275 (15): 11312–9. doi:10.1074/jbc.275.15.11312. PMID 10753943.
  • Laporte SA, Oakley RH, Holt JA, et al. (2000). "The interaction of beta-arrestin with the AP-2 adaptor is required for the clustering of beta 2-adrenergic receptor into clathrin-coated pits". J. Biol. Chem. 275 (30): 23120–6. doi:10.1074/jbc.M002581200. PMID 10770944.
  • Bennett TA, Maestas DC, Prossnitz ER (2000). "Arrestin binding to the G protein-coupled N-formyl peptide receptor is regulated by the conserved "DRY" sequence". J. Biol. Chem. 275 (32): 24590–4. doi:10.1074/jbc.C000314200. PMID 10823817.
  • Shiina T, Kawasaki A, Nagao T, Kurose H (2000). "Interaction with beta-arrestin determines the difference in internalization behavor between beta1- and beta2-adrenergic receptors". J. Biol. Chem. 275 (37): 29082–90. doi:10.1074/jbc.M909757199. PMID 10862778.
  • Barlic J, Andrews JD, Kelvin AA, et al. (2001). "Regulation of tyrosine kinase activation and granule release through beta-arrestin by CXCRI". Nat. Immunol. 1 (3): 227–33. doi:10.1038/79767. PMID 10973280.

External links