Arrestin beta 1: Difference between revisions
m Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}) |
m Bot: HTTP→HTTPS (v470) |
||
Line 1: | Line 1: | ||
< | {{Infobox_gene}} | ||
{{ | '''Arrestin, beta 1''', also known as '''ARRB1''', is a [[protein]] which in humans is encoded by the ''ARRB1'' [[gene]].<ref name="pmid8486659">{{cite journal |vauthors=Parruti G, Peracchia F, Sallese M, Ambrosini G, Masini M, Rotilio D, De Blasi A | title = Molecular analysis of human beta-arrestin-1: cloning, tissue distribution, and regulation of expression. Identification of two isoforms generated by alternative splicing | journal = The Journal of Biological Chemistry | volume = 268 | issue = 13 | pages = 9753–61 |date=May 1993 | pmid = 8486659 | doi = | url = http://www.jbc.org/cgi/reprint/268/13/9753 }}</ref><ref name = "entrez">{{cite web | title = Entrez Gene: ARRB1 arrestin, beta 1| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=408| accessdate = }}</ref> | ||
| | |||
| | == Function == | ||
| | Members of [[arrestin]]/beta-arrestin protein family are thought to participate in agonist-mediated desensitization of [[G protein-coupled receptor]]s and cause specific dampening of cellular responses to stimuli such as hormones, neurotransmitters, or sensory signals. Arrestin beta 1 is a [[cytosol]]ic protein and acts as a cofactor in the beta-adrenergic receptor kinase ([[Beta adrenergic receptor kinase|BARK]]) mediated desensitization of [[adrenergic receptor|beta-adrenergic receptor]]s. Besides the central nervous system, it is expressed at high levels in peripheral blood leukocytes, and thus the BARK/beta-arrestin system is believed to play a major role in regulating receptor-mediated immune functions. Alternatively spliced transcripts encoding different isoforms of arrestin beta 1 have been described, however, their exact functions are not known.<ref name = "entrez"/> | ||
| | Beta-arrestin might also play a role as scaffold protein in the GPCR pathways.{{citation needed|date=December 2012}} | ||
}} | |||
== Interactions == | |||
Arrestin beta 1 has been shown to [[Protein-protein interaction|interact]] with | |||
* [[Arf6]],<ref name="pmid11533043">{{cite journal |vauthors=Claing A, Chen W, Miller WE, Vitale N, Moss J, Premont RT, Lefkowitz RJ | title = beta-Arrestin-mediated ADP-ribosylation factor 6 activation and beta 2-adrenergic receptor endocytosis | journal = J. Biol. Chem. | volume = 276 | issue = 45 | pages = 42509–13 |date=November 2001 | pmid = 11533043 | doi = 10.1074/jbc.M108399200 }}</ref> | |||
* [[Parathyroid hormone-related protein|PTHLH]],<ref name="pmid12220636">{{cite journal |vauthors=Conlan LA, Martin TJ, Gillespie MT | title = The COOH-terminus of parathyroid hormone-related protein (PTHrP) interacts with beta-arrestin 1B | journal = FEBS Lett. | volume = 527 | issue = 1–3 | pages = 71–5 |date=September 2002 | pmid = 12220636 | doi = 10.1016/S0014-5793(02)03164-2 }}</ref> | |||
* [[DVL2]]<ref name="pmid11742073">{{cite journal |vauthors=Chen W, Hu LA, Semenov MV, Yanagawa S, Kikuchi A, Lefkowitz RJ, Miller WE | title = beta-Arrestin1 modulates lymphoid enhancer factor transcriptional activity through interaction with phosphorylated dishevelled proteins | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 98 | issue = 26 | pages = 14889–94 |date=December 2001 | pmid = 11742073 | pmc = 64954 | doi = 10.1073/pnas.211572798 }}</ref> | |||
* [[Mdm2]],<ref name="pmid12538596">{{cite journal |vauthors=Wang P, Wu Y, Ge X, Ma L, Pei G | title = Subcellular localization of beta-arrestins is determined by their intact N domain and the nuclear export signal at the C terminus | journal = J. Biol. Chem. | volume = 278 | issue = 13 | pages = 11648–53 |date=March 2003 | pmid = 12538596 | doi = 10.1074/jbc.M208109200 }}</ref><ref name="pmid18544533">{{cite journal |vauthors=Shenoy SK, Xiao K, Venkataramanan V, Snyder PM, Freedman NJ, Weissman AM | title = Nedd4 mediates agonist-dependent ubiquitination, lysosomal targeting, and degradation of the beta2-adrenergic receptor | journal = J. Biol. Chem. | volume = 283 | issue = 32 | pages = 22166–76 |date=August 2008 | pmid = 18544533 | pmc = 2494938 | doi = 10.1074/jbc.M709668200 }}</ref> | |||
* [[Delta Opioid receptor|OPRD1]],<ref name="pmid11259507">{{cite journal |vauthors=Cen B, Yu Q, Guo J, Wu Y, Ling K, Cheng Z, Ma L, Pei G | title = Direct binding of beta-arrestins to two distinct intracellular domains of the delta opioid receptor | journal = J. Neurochem. | volume = 76 | issue = 6 | pages = 1887–94 |date=March 2001 | pmid = 11259507 | doi = 10.1046/j.1471-4159.2001.00204.x }}</ref> | |||
* [[PSCD2]],<ref name=pmid11533043/> and | |||
* [[RALGDS]].<ref name="pmid12105416">{{cite journal |vauthors=Bhattacharya M, Anborgh PH, Babwah AV, Dale LB, Dobransky T, Benovic JL, Feldman RD, Verdi JM, Rylett RJ, Ferguson SS | title = Beta-arrestins regulate a Ral-GDS Ral effector pathway that mediates cytoskeletal reorganization | journal = Nat. Cell Biol. | volume = 4 | issue = 8 | pages = 547–55 |date=August 2002 | pmid = 12105416 | doi = 10.1038/ncb821 | url = }}</ref> | |||
== References == | |||
{{Reflist}} | |||
}} | |||
==Further reading== | ==Further reading== | ||
{{ | {{Refbegin | 2}} | ||
*{{cite journal | author=Lefkowitz RJ |title=G protein-coupled receptors. III. New roles for receptor kinases and beta-arrestins in receptor signaling and desensitization |journal=J. Biol. Chem. |volume=273 |issue= 30 |pages= 18677–80 |year= 1998 |pmid= 9668034 |doi=10.1074/jbc.273.30.18677 }} | |||
*{{cite journal |vauthors=Lohse MJ, Benovic JL, Codina J |title=beta-Arrestin: a protein that regulates beta-adrenergic receptor function |journal=Science |volume=248 |issue= 4962 |pages= 1547–50 |year= 1990 |pmid= 2163110 |doi=10.1126/science.2163110 |display-authors=etal}} | |||
*{{cite journal | author=Lefkowitz RJ |title=G protein-coupled receptors. III. New roles for receptor kinases and beta-arrestins in receptor signaling and desensitization | *{{cite journal |vauthors=Calabrese G, Sallese M, Stornaiuolo A |title=Assignment of the beta-arrestin 1 gene (ARRB1) to human chromosome 11q13 |journal=Genomics |volume=24 |issue= 1 |pages= 169–71 |year= 1995 |pmid= 7896272 |doi= 10.1006/geno.1994.1594 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Parruti G, Peracchia F, Sallese M |title=Molecular analysis of human beta-arrestin-1: cloning, tissue distribution, and regulation of expression. Identification of two isoforms generated by alternative splicing |journal=J. Biol. Chem. |volume=268 |issue= 13 |pages= 9753–61 |year= 1993 |pmid= 8486659 |doi= |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Iacovelli L, Franchetti R, Masini M, De Blasi A |title=GRK2 and beta-arrestin 1 as negative regulators of thyrotropin receptor-stimulated response |journal=Mol. Endocrinol. |volume=10 |issue= 9 |pages= 1138–46 |year= 1997 |pmid= 8885248 |doi=10.1210/me.10.9.1138 }} | ||
*{{cite journal | | *{{cite journal |vauthors=Bonaldo MF, Lennon G, Soares MB |title=Normalization and subtraction: two approaches to facilitate gene discovery |journal=Genome Res. |volume=6 |issue= 9 |pages= 791–806 |year= 1997 |pmid= 8889548 |doi=10.1101/gr.6.9.791 }} | ||
*{{cite journal | | *{{cite journal |vauthors=Goodman OB, Krupnick JG, Gurevich VV |title=Arrestin/clathrin interaction. Localization of the arrestin binding locus to the clathrin terminal domain |journal=J. Biol. Chem. |volume=272 |issue= 23 |pages= 15017–22 |year= 1997 |pmid= 9169477 |doi=10.1074/jbc.272.23.15017 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Lin FT, Krueger KM, Kendall HE |title=Clathrin-mediated endocytosis of the beta-adrenergic receptor is regulated by phosphorylation/dephosphorylation of beta-arrestin1 |journal=J. Biol. Chem. |volume=272 |issue= 49 |pages= 31051–7 |year= 1998 |pmid= 9388255 |doi=10.1074/jbc.272.49.31051 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Aragay AM, Mellado M, Frade JM |title=Monocyte chemoattractant protein-1-induced CCR2B receptor desensitization mediated by the G protein-coupled receptor kinase 2 |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=95 |issue= 6 |pages= 2985–90 |year= 1998 |pmid= 9501202 |doi=10.1073/pnas.95.6.2985 | pmc=19681 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=ter Haar E, Musacchio A, Harrison SC, Kirchhausen T |title=Atomic structure of clathrin: a beta propeller terminal domain joins an alpha zigzag linker |journal=Cell |volume=95 |issue= 4 |pages= 563–73 |year= 1998 |pmid= 9827808 |doi=10.1016/S0092-8674(00)81623-2 }} | ||
*{{cite journal | | *{{cite journal |vauthors=Luttrell LM, Ferguson SS, Daaka Y |title=Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes |journal=Science |volume=283 |issue= 5402 |pages= 655–61 |year= 1999 |pmid= 9924018 |doi=10.1126/science.283.5402.655 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=McDonald PH, Cote NL, Lin FT |title=Identification of NSF as a beta-arrestin1-binding protein. Implications for beta2-adrenergic receptor regulation |journal=J. Biol. Chem. |volume=274 |issue= 16 |pages= 10677–80 |year= 1999 |pmid= 10196135 |doi=10.1074/jbc.274.16.10677 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Lin FT, Miller WE, Luttrell LM, Lefkowitz RJ |title=Feedback regulation of beta-arrestin1 function by extracellular signal-regulated kinases |journal=J. Biol. Chem. |volume=274 |issue= 23 |pages= 15971–4 |year= 1999 |pmid= 10347142 |doi=10.1074/jbc.274.23.15971 }} | ||
*{{cite journal | | *{{cite journal |vauthors=McConalogue K, Déry O, Lovett M |title=Substance P-induced trafficking of beta-arrestins. The role of beta-arrestins in endocytosis of the neurokinin-1 receptor |journal=J. Biol. Chem. |volume=274 |issue= 23 |pages= 16257–68 |year= 1999 |pmid= 10347182 |doi=10.1074/jbc.274.23.16257 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Miller WE, Maudsley S, Ahn S |title=beta-arrestin1 interacts with the catalytic domain of the tyrosine kinase c-SRC. Role of beta-arrestin1-dependent targeting of c-SRC in receptor endocytosis |journal=J. Biol. Chem. |volume=275 |issue= 15 |pages= 11312–9 |year= 2000 |pmid= 10753943 |doi=10.1074/jbc.275.15.11312 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Laporte SA, Oakley RH, Holt JA |title=The interaction of beta-arrestin with the AP-2 adaptor is required for the clustering of beta 2-adrenergic receptor into clathrin-coated pits |journal=J. Biol. Chem. |volume=275 |issue= 30 |pages= 23120–6 |year= 2000 |pmid= 10770944 |doi= 10.1074/jbc.M002581200 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Bennett TA, Maestas DC, Prossnitz ER |title=Arrestin binding to the G protein-coupled N-formyl peptide receptor is regulated by the conserved "DRY" sequence |journal=J. Biol. Chem. |volume=275 |issue= 32 |pages= 24590–4 |year= 2000 |pmid= 10823817 |doi= 10.1074/jbc.C000314200 }} | ||
*{{cite journal | | *{{cite journal |vauthors=Shiina T, Kawasaki A, Nagao T, Kurose H |title=Interaction with beta-arrestin determines the difference in internalization behavor between beta1- and beta2-adrenergic receptors |journal=J. Biol. Chem. |volume=275 |issue= 37 |pages= 29082–90 |year= 2000 |pmid= 10862778 |doi= 10.1074/jbc.M909757199 }} | ||
*{{cite journal | | *{{cite journal |vauthors=Barlic J, Andrews JD, Kelvin AA |title=Regulation of tyrosine kinase activation and granule release through beta-arrestin by CXCRI |journal=Nat. Immunol. |volume=1 |issue= 3 |pages= 227–33 |year= 2001 |pmid= 10973280 |doi= 10.1038/79767 |display-authors=etal}} | ||
*{{cite journal | | {{Refend}} | ||
*{{cite journal | | *{{Cite journal | ||
| pmid = 25043026 | |||
| year = 2014 | |||
| author1 = Shukla | |||
| first1 = A. K. | |||
| title = Visualization of arrestin recruitment by a G-protein-coupled receptor | |||
| journal = Nature | |||
| last2 = Westfield | |||
| first2 = G. H. | |||
| last3 = Xiao | |||
| first3 = K | |||
| last4 = Reis | |||
| first4 = R. I. | |||
| last5 = Huang | |||
| first5 = L. Y. | |||
| last6 = Tripathi-Shukla | |||
| first6 = P | |||
| last7 = Qian | |||
| first7 = J | |||
| last8 = Li | |||
| first8 = S | |||
| last9 = Blanc | |||
| first9 = A | |||
| last10 = Oleskie | |||
| first10 = A. N. | |||
| last11 = Dosey | |||
| first11 = A. M. | |||
| last12 = Su | |||
| first12 = M | |||
| last13 = Liang | |||
| first13 = C. R. | |||
| last14 = Gu | |||
| first14 = L. L. | |||
| last15 = Shan | |||
| first15 = J. M. | |||
| last16 = Chen | |||
| first16 = X | |||
| last17 = Hanna | |||
| first17 = R | |||
| last18 = Choi | |||
| first18 = M | |||
| last19 = Yao | |||
| first19 = X. J. | |||
| last20 = Klink | |||
| first20 = B. U. | |||
| last21 = Kahsai | |||
| first21 = A. W. | |||
| last22 = Sidhu | |||
| first22 = S. S. | |||
| last23 = Koide | |||
| first23 = S | |||
| last24 = Penczek | |||
| first24 = P. A. | |||
| last25 = Kossiakoff | |||
| first25 = A. A. | |||
| last26 = Woods Jr | |||
| first26 = V. L. | |||
| last27 = Kobilka | |||
| first27 = B. K. | |||
| last28 = Skiniotis | |||
| first28 = G | |||
| last29 = Lefkowitz | |||
| first29 = R. J. | |||
| doi = 10.1038/nature13430 | |||
| volume=512 | |||
| pages=218–22 | |||
| pmc=4134437 | |||
}} | }} | ||
{{ | ==External links== | ||
* {{UCSC gene info|ARRB1}} | |||
{{PDB Gallery|geneid=408}} | |||
{{Membrane proteins}} |
Latest revision as of 01:35, 27 October 2017
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
Arrestin, beta 1, also known as ARRB1, is a protein which in humans is encoded by the ARRB1 gene.[1][2]
Function
Members of arrestin/beta-arrestin protein family are thought to participate in agonist-mediated desensitization of G protein-coupled receptors and cause specific dampening of cellular responses to stimuli such as hormones, neurotransmitters, or sensory signals. Arrestin beta 1 is a cytosolic protein and acts as a cofactor in the beta-adrenergic receptor kinase (BARK) mediated desensitization of beta-adrenergic receptors. Besides the central nervous system, it is expressed at high levels in peripheral blood leukocytes, and thus the BARK/beta-arrestin system is believed to play a major role in regulating receptor-mediated immune functions. Alternatively spliced transcripts encoding different isoforms of arrestin beta 1 have been described, however, their exact functions are not known.[2] Beta-arrestin might also play a role as scaffold protein in the GPCR pathways.[citation needed]
Interactions
Arrestin beta 1 has been shown to interact with
References
- ↑ Parruti G, Peracchia F, Sallese M, Ambrosini G, Masini M, Rotilio D, De Blasi A (May 1993). "Molecular analysis of human beta-arrestin-1: cloning, tissue distribution, and regulation of expression. Identification of two isoforms generated by alternative splicing". The Journal of Biological Chemistry. 268 (13): 9753–61. PMID 8486659.
- ↑ 2.0 2.1 "Entrez Gene: ARRB1 arrestin, beta 1".
- ↑ 3.0 3.1 Claing A, Chen W, Miller WE, Vitale N, Moss J, Premont RT, Lefkowitz RJ (November 2001). "beta-Arrestin-mediated ADP-ribosylation factor 6 activation and beta 2-adrenergic receptor endocytosis". J. Biol. Chem. 276 (45): 42509–13. doi:10.1074/jbc.M108399200. PMID 11533043.
- ↑ Conlan LA, Martin TJ, Gillespie MT (September 2002). "The COOH-terminus of parathyroid hormone-related protein (PTHrP) interacts with beta-arrestin 1B". FEBS Lett. 527 (1–3): 71–5. doi:10.1016/S0014-5793(02)03164-2. PMID 12220636.
- ↑ Chen W, Hu LA, Semenov MV, Yanagawa S, Kikuchi A, Lefkowitz RJ, Miller WE (December 2001). "beta-Arrestin1 modulates lymphoid enhancer factor transcriptional activity through interaction with phosphorylated dishevelled proteins". Proc. Natl. Acad. Sci. U.S.A. 98 (26): 14889–94. doi:10.1073/pnas.211572798. PMC 64954. PMID 11742073.
- ↑ Wang P, Wu Y, Ge X, Ma L, Pei G (March 2003). "Subcellular localization of beta-arrestins is determined by their intact N domain and the nuclear export signal at the C terminus". J. Biol. Chem. 278 (13): 11648–53. doi:10.1074/jbc.M208109200. PMID 12538596.
- ↑ Shenoy SK, Xiao K, Venkataramanan V, Snyder PM, Freedman NJ, Weissman AM (August 2008). "Nedd4 mediates agonist-dependent ubiquitination, lysosomal targeting, and degradation of the beta2-adrenergic receptor". J. Biol. Chem. 283 (32): 22166–76. doi:10.1074/jbc.M709668200. PMC 2494938. PMID 18544533.
- ↑ Cen B, Yu Q, Guo J, Wu Y, Ling K, Cheng Z, Ma L, Pei G (March 2001). "Direct binding of beta-arrestins to two distinct intracellular domains of the delta opioid receptor". J. Neurochem. 76 (6): 1887–94. doi:10.1046/j.1471-4159.2001.00204.x. PMID 11259507.
- ↑ Bhattacharya M, Anborgh PH, Babwah AV, Dale LB, Dobransky T, Benovic JL, Feldman RD, Verdi JM, Rylett RJ, Ferguson SS (August 2002). "Beta-arrestins regulate a Ral-GDS Ral effector pathway that mediates cytoskeletal reorganization". Nat. Cell Biol. 4 (8): 547–55. doi:10.1038/ncb821. PMID 12105416.
Further reading
- Lefkowitz RJ (1998). "G protein-coupled receptors. III. New roles for receptor kinases and beta-arrestins in receptor signaling and desensitization". J. Biol. Chem. 273 (30): 18677–80. doi:10.1074/jbc.273.30.18677. PMID 9668034.
- Lohse MJ, Benovic JL, Codina J, et al. (1990). "beta-Arrestin: a protein that regulates beta-adrenergic receptor function". Science. 248 (4962): 1547–50. doi:10.1126/science.2163110. PMID 2163110.
- Calabrese G, Sallese M, Stornaiuolo A, et al. (1995). "Assignment of the beta-arrestin 1 gene (ARRB1) to human chromosome 11q13". Genomics. 24 (1): 169–71. doi:10.1006/geno.1994.1594. PMID 7896272.
- Parruti G, Peracchia F, Sallese M, et al. (1993). "Molecular analysis of human beta-arrestin-1: cloning, tissue distribution, and regulation of expression. Identification of two isoforms generated by alternative splicing". J. Biol. Chem. 268 (13): 9753–61. PMID 8486659.
- Iacovelli L, Franchetti R, Masini M, De Blasi A (1997). "GRK2 and beta-arrestin 1 as negative regulators of thyrotropin receptor-stimulated response". Mol. Endocrinol. 10 (9): 1138–46. doi:10.1210/me.10.9.1138. PMID 8885248.
- Bonaldo MF, Lennon G, Soares MB (1997). "Normalization and subtraction: two approaches to facilitate gene discovery". Genome Res. 6 (9): 791–806. doi:10.1101/gr.6.9.791. PMID 8889548.
- Goodman OB, Krupnick JG, Gurevich VV, et al. (1997). "Arrestin/clathrin interaction. Localization of the arrestin binding locus to the clathrin terminal domain". J. Biol. Chem. 272 (23): 15017–22. doi:10.1074/jbc.272.23.15017. PMID 9169477.
- Lin FT, Krueger KM, Kendall HE, et al. (1998). "Clathrin-mediated endocytosis of the beta-adrenergic receptor is regulated by phosphorylation/dephosphorylation of beta-arrestin1". J. Biol. Chem. 272 (49): 31051–7. doi:10.1074/jbc.272.49.31051. PMID 9388255.
- Aragay AM, Mellado M, Frade JM, et al. (1998). "Monocyte chemoattractant protein-1-induced CCR2B receptor desensitization mediated by the G protein-coupled receptor kinase 2". Proc. Natl. Acad. Sci. U.S.A. 95 (6): 2985–90. doi:10.1073/pnas.95.6.2985. PMC 19681. PMID 9501202.
- ter Haar E, Musacchio A, Harrison SC, Kirchhausen T (1998). "Atomic structure of clathrin: a beta propeller terminal domain joins an alpha zigzag linker". Cell. 95 (4): 563–73. doi:10.1016/S0092-8674(00)81623-2. PMID 9827808.
- Luttrell LM, Ferguson SS, Daaka Y, et al. (1999). "Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes". Science. 283 (5402): 655–61. doi:10.1126/science.283.5402.655. PMID 9924018.
- McDonald PH, Cote NL, Lin FT, et al. (1999). "Identification of NSF as a beta-arrestin1-binding protein. Implications for beta2-adrenergic receptor regulation". J. Biol. Chem. 274 (16): 10677–80. doi:10.1074/jbc.274.16.10677. PMID 10196135.
- Lin FT, Miller WE, Luttrell LM, Lefkowitz RJ (1999). "Feedback regulation of beta-arrestin1 function by extracellular signal-regulated kinases". J. Biol. Chem. 274 (23): 15971–4. doi:10.1074/jbc.274.23.15971. PMID 10347142.
- McConalogue K, Déry O, Lovett M, et al. (1999). "Substance P-induced trafficking of beta-arrestins. The role of beta-arrestins in endocytosis of the neurokinin-1 receptor". J. Biol. Chem. 274 (23): 16257–68. doi:10.1074/jbc.274.23.16257. PMID 10347182.
- Miller WE, Maudsley S, Ahn S, et al. (2000). "beta-arrestin1 interacts with the catalytic domain of the tyrosine kinase c-SRC. Role of beta-arrestin1-dependent targeting of c-SRC in receptor endocytosis". J. Biol. Chem. 275 (15): 11312–9. doi:10.1074/jbc.275.15.11312. PMID 10753943.
- Laporte SA, Oakley RH, Holt JA, et al. (2000). "The interaction of beta-arrestin with the AP-2 adaptor is required for the clustering of beta 2-adrenergic receptor into clathrin-coated pits". J. Biol. Chem. 275 (30): 23120–6. doi:10.1074/jbc.M002581200. PMID 10770944.
- Bennett TA, Maestas DC, Prossnitz ER (2000). "Arrestin binding to the G protein-coupled N-formyl peptide receptor is regulated by the conserved "DRY" sequence". J. Biol. Chem. 275 (32): 24590–4. doi:10.1074/jbc.C000314200. PMID 10823817.
- Shiina T, Kawasaki A, Nagao T, Kurose H (2000). "Interaction with beta-arrestin determines the difference in internalization behavor between beta1- and beta2-adrenergic receptors". J. Biol. Chem. 275 (37): 29082–90. doi:10.1074/jbc.M909757199. PMID 10862778.
- Barlic J, Andrews JD, Kelvin AA, et al. (2001). "Regulation of tyrosine kinase activation and granule release through beta-arrestin by CXCRI". Nat. Immunol. 1 (3): 227–33. doi:10.1038/79767. PMID 10973280.
- Shukla, A. K.; Westfield, G. H.; Xiao, K; Reis, R. I.; Huang, L. Y.; Tripathi-Shukla, P; Qian, J; Li, S; Blanc, A; Oleskie, A. N.; Dosey, A. M.; Su, M; Liang, C. R.; Gu, L. L.; Shan, J. M.; Chen, X; Hanna, R; Choi, M; Yao, X. J.; Klink, B. U.; Kahsai, A. W.; Sidhu, S. S.; Koide, S; Penczek, P. A.; Kossiakoff, A. A.; Woods Jr, V. L.; Kobilka, B. K.; Skiniotis, G; Lefkowitz, R. J. (2014). "Visualization of arrestin recruitment by a G-protein-coupled receptor". Nature. 512: 218–22. doi:10.1038/nature13430. PMC 4134437. PMID 25043026.
External links
- Human ARRB1 genome location and ARRB1 gene details page in the UCSC Genome Browser.