Atropine: Difference between revisions
m Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}) |
No edit summary |
||
Line 62: | Line 62: | ||
A commonly used [[mnemonic]] used to described the physiologic manifestions of atropine overdose is: "hot as a hare, blind as a bat, dry as a bone, red as a beet, and mad as a wet hen".<ref name="holzman">{{cite web|url=http://www.anesthesiology.org/pt/re/anes/fulltext.00000542-199807000-00030.htm;jsessionid=GSJKLv9vLCdQSmpp6vH3xdhnzWN1hy3s7JqMNFpWkHhLbKJT5vLM!741375937!-949856145!8091!-1#P89|title=The Legacy of Atropos|author=Robert S. Holzman, MD|journal=Anesthesiology|volume=89|issue=1|date=1998-07|pages=241-249}} citing J. Arena, Poisoning: Toxicology-Symptoms-Treatments, 3rd edition. Springfield, Charles C. Thomas, 1974, p 345 </ref> This set of symptoms is known as [[toxidrome#Anticholinergic toxidrome|anticholinergic toxidrome]], and may also be caused by other drugs with anticholinergic effects, such as [[diphenhydramine]], [[phenothiazine]] [[antipsychotic]]s and [[benztropine]].<ref>{{cite web | url = http://www.intox.org/databank/documents/treat/treate/trt05_e.htm | title = Acute anticholinergic syndrome | author = Szajewski J | year = 1995 | publisher = IPCS Intox Databank}}</ref> | A commonly used [[mnemonic]] used to described the physiologic manifestions of atropine overdose is: "hot as a hare, blind as a bat, dry as a bone, red as a beet, and mad as a wet hen".<ref name="holzman">{{cite web|url=http://www.anesthesiology.org/pt/re/anes/fulltext.00000542-199807000-00030.htm;jsessionid=GSJKLv9vLCdQSmpp6vH3xdhnzWN1hy3s7JqMNFpWkHhLbKJT5vLM!741375937!-949856145!8091!-1#P89|title=The Legacy of Atropos|author=Robert S. Holzman, MD|journal=Anesthesiology|volume=89|issue=1|date=1998-07|pages=241-249}} citing J. Arena, Poisoning: Toxicology-Symptoms-Treatments, 3rd edition. Springfield, Charles C. Thomas, 1974, p 345 </ref> This set of symptoms is known as [[toxidrome#Anticholinergic toxidrome|anticholinergic toxidrome]], and may also be caused by other drugs with anticholinergic effects, such as [[diphenhydramine]], [[phenothiazine]] [[antipsychotic]]s and [[benztropine]].<ref>{{cite web | url = http://www.intox.org/databank/documents/treat/treate/trt05_e.htm | title = Acute anticholinergic syndrome | author = Szajewski J | year = 1995 | publisher = IPCS Intox Databank}}</ref> | ||
===Pill Images=== | |||
{{TempDrugImages}} | |||
{{PillImage|fileName=Lomotil_NDC_00250061.jpg|drugName=Lomotil|NDC=00250061|drugAuthor=G.D. Searle LLC Division of Pfizer Inc|ingredients=diphenoxylate hydrochloride[diphenoxylate];atropine sulfate[atropine]|pillImprint=SEARLE;61|dosageValue=0.025|dosageUnit=mg|pillColor=White|pillShape=Round|pillSize=6|pillScore=1}} | |||
{{PillImage|fileName=Motofen_NDC_01870500.jpg|drugName=Motofen|NDC=01870500|drugAuthor=Valeant Pharmaceuticals North America LLC|ingredients=DIFENOXIN HYDROCHLORIDE[DIFENOXIN];ATROPINE SULFATE[ATROPINE]|pillImprint=0500;V|dosageValue=0.025|dosageUnit=mg|pillColor=White|pillShape=Pentagon|pillSize=3|pillScore=2}} | |||
{{PillImage|fileName=Diphenoxylate_Hydrochloride_and_Atropine_Sulfate_NDC_675440021.jpg|drugName=Diphenoxylate Hydrochloride and Atropine Sulfate|NDC=675440021|drugAuthor=Aphena Pharma Solutions - Tennessee, LLC|ingredients=DIPHENOXYLATE HYDROCHLORIDE[DIPHENOXYLATE];ATROPINE SULFATE[ATROPINE]|pillImprint=M;15|dosageValue=0.025|dosageUnit=mg|pillColor=White|pillShape=Round|pillSize=6|pillScore=1}} | |||
{{PillImage|fileName=Diphenoxylate_Hydrochloride_and_Atropine_Sulfate_NDC_03780415.jpg|drugName=Diphenoxylate Hydrochloride and Atropine Sulfate|NDC=03780415|drugAuthor=Mylan Pharmaceuticals Inc.|ingredients=DIPHENOXYLATE HYDROCHLORIDE[DIPHENOXYLATE];ATROPINE SULFATE[ATROPINE]|pillImprint=M;15|dosageValue=0.025|dosageUnit=mg|pillColor=White|pillShape=Round|pillSize=6|pillScore=1}} | |||
{{PillImage|fileName=Donnatal_Extentabs_NDC_662130421.jpg|drugName=Donnatal Extentabs|NDC=662130421|drugAuthor=PBM Pharmaceuticals, Inc|ingredients=Phenobarbital[Phenobarbital];HYOSCYAMINE SULFATE[HYOSCYAMINE];ATROPINE SULFATE[ATROPINE];SCOPOLAMINE HYDROBROMIDE[SCOPOLAMINE]|pillImprint=P;421;421|dosageValue=0.0582|dosageUnit=mg|pillColor=Green|pillShape=Round|pillSize=10|pillScore=1}} | |||
== Chemistry and pharmacology== | == Chemistry and pharmacology== |
Revision as of 19:40, 8 July 2014
Clinical data | |
---|---|
Pregnancy category |
|
Routes of administration | Oral, IV, rectal |
ATC code | |
Legal status | |
Legal status |
|
Pharmacokinetic data | |
Bioavailability | 25% |
Metabolism | 50% hydrolysed to tropine and tropic acid |
Elimination half-life | 2 hours |
Excretion | 50% excreted unchanged in urine |
Identifiers | |
| |
CAS Number | |
PubChem CID | |
DrugBank | |
E number | {{#property:P628}} |
ECHA InfoCard | {{#property:P2566}}Lua error in Module:EditAtWikidata at line 36: attempt to index field 'wikibase' (a nil value). |
Chemical and physical data | |
Formula | C17H23NO3 |
Molar mass | 289.369 |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]
Atropine is a tropane alkaloid extracted from the deadly nightshade (Atropa belladonna) and other plants of the family Solanaceae. It is a secondary metabolite of these plants and serves as a drug with a wide variety of effects. Being potentially deadly, it derives its name from Atropos, one of the three Fates who, according to Greek mythology, chose how a person was to die.
Physiological effects and uses
Generally, atropine lowers the "rest and digest" activity of all muscles and glands regulated by the parasympathetic nervous system. This occurs because atropine is a competitive antagonist of the muscarinic acetylcholine receptors. (Acetylcholine is the main neurotransmitter used by the parasympathetic nervous system.) Therefore, it may cause swallowing difficulties and reduced secretions.
Ophthalmic use
Topical atropine is used as a cycloplegic, to temporarily paralyze the accommodation reflex; and as a mydriatic, to dilate the pupils. Atropine degrades slowly, typically wearing off in 2 to 3 days, so tropicamide (a shorter-acting cholinergic antagonist) or phenylephrine (an α-adrenergic agonist) are generally preferred as mydriatics. The effects of atropine can last up to two weeks. Atropine induces mydriasis by blocking contraction of the circular pupillary sphincter muscle, which is normally stimulated by acetylcholine release, thereby allowing the radial pupillary dilator muscle to contract and dilate the pupil. Atropine is contraindicated in patients predisposed to narrow angle glaucoma.
Atropine can be given to patients who have direct globe trauma.
Resuscitation
Injections of atropine are used in the treatment of bradycardia (an extremely low heart rate), asystole and pulseless electrical activity (PEA) in cardiac arrest. This works because the main action of the vagus nerve of the parasympathetic system on the heart is to slow it down. Atropine blocks that action and therefore may speed up the heart rate. The usual dose of atropine is 0.5 to 1 mg every three to five minutes, up to a maximum dose of 3 mg.
Atropine is also useful in treating first degree heart block, second degree heart block Mobitz Type 1 (Wenckebach block), and also third degree heart block with a high Purkinje or AV-nodal escape rhythm. It is usually not effective in second degree heart block Mobitz type 2, and in third degree heart block with a low Purkinje or ventricular escape rhythm. Atropine is contraindicated in ischemia-induced conduction block, because the drug increases oxygen demand of the AV nodal tissue, thereby aggravating ischemia and the resulting heart block.
One of the main actions of the parasympathetic nervous system is to stimulate the M2 muscarinic receptor in the heart, but atropine inhibits this action.
Secretions and bronchoconstriction
Atropine's actions on the parasympathetic nervous system inhibits salivary, sweat, and mucus glands. This can be useful in treating Hyperhidrosis and can prevent the death rattle of dying patients. Even though it has not been officially indicated for either of these purposes by the FDA, it has been used by physicians for these purposes. [1]
Antidote for organophosphate poisoning
By blocking the action of acetylcholine at muscarinic receptors, atropine also serves as an antidote for poisoning by organophosphate insecticides and nerve gases. Troops who are likely to be attacked with chemical weapons often carry autoinjectors with atropine and obidoxime which can be quickly injected into the thigh. It is often used in conjunction with Pralidoxime chloride.
Atropine is given as an antidote to SLUDGE (Salivation, Lacrimation, Urination, Diaphoresis, Gastrointestinal motility, Emesis) symptoms caused by organophosphate poisoning.
Some of the nerve gases attack and destroy acetylcholinesterase, so the action of acetylcholine becomes prolonged. Therefore, atropine can be used to reduce the effect of acetylcholine.
Side effects and overdose
Adverse reactions to atropine include ventricular fibrillation, supraventricular or ventricular tachycardia, dizziness, nausea, blurred vision, loss of balance, dilated pupils, photophobia, and possibly, notably in the elderly, extreme confusion, hallucinations, and excitation. These latter effects are due to the fact that atropine is able to cross the blood-brain barrier. Because of the hallucinogenic properties, some have used the drug recreationally, though this is very dangerous and often unpleasant.
In overdoses, atropine is poisonous. Atropine is sometimes added to other potentially addictive drugs; abuse of those drugs is then prevented by the unpleasant effects of atropine overdose.[citation needed]
Although atropine treats bradycardia (slow heart rate) in emergency settings, it can cause heart rate slowing when given at very low doses, presumably as a result of a weak partial agonist effect at the cardiac muscarinic receptors.[citation needed]
The antidote to atropine is physostigmine or pilocarpine.
A commonly used mnemonic used to described the physiologic manifestions of atropine overdose is: "hot as a hare, blind as a bat, dry as a bone, red as a beet, and mad as a wet hen".[2] This set of symptoms is known as anticholinergic toxidrome, and may also be caused by other drugs with anticholinergic effects, such as diphenhydramine, phenothiazine antipsychotics and benztropine.[3]
Pill Images
{{#ask: Page Name::Atropine |?Pill Name |?Drug Name |?Pill Ingred |?Pill Imprint |?Pill Dosage |?Pill Color |?Pill Shape |?Pill Size (mm) |?Pill Scoring |?NDC |?Drug Author |format=template |template=DrugPageImages |mainlabel=- |sort=Pill Name }} {{#subobject:
|Page Name=Atropine |Pill Name=Lomotil_NDC_00250061.jpg |Drug Name=Lomotil |Pill Ingred=diphenoxylate hydrochloride[diphenoxylate];atropine sulfate[atropine]|+sep=; |Pill Imprint=SEARLE;61 |Pill Dosage=0.025 mg |Pill Color=White|+sep=; |Pill Shape=Round |Pill Size (mm)=6 |Pill Scoring=1 |Pill Image= |Drug Author=G.D. Searle LLC Division of Pfizer Inc |NDC=00250061
}}
{{#subobject:
|Page Name=Atropine |Pill Name=Motofen_NDC_01870500.jpg |Drug Name=Motofen |Pill Ingred=DIFENOXIN HYDROCHLORIDE[DIFENOXIN];ATROPINE SULFATE[ATROPINE]|+sep=; |Pill Imprint=0500;V |Pill Dosage=0.025 mg |Pill Color=White|+sep=; |Pill Shape=Pentagon |Pill Size (mm)=3 |Pill Scoring=2 |Pill Image= |Drug Author=Valeant Pharmaceuticals North America LLC |NDC=01870500
}}
{{#subobject:
|Page Name=Atropine |Pill Name=Diphenoxylate_Hydrochloride_and_Atropine_Sulfate_NDC_675440021.jpg |Drug Name=Diphenoxylate Hydrochloride and Atropine Sulfate |Pill Ingred=DIPHENOXYLATE HYDROCHLORIDE[DIPHENOXYLATE];ATROPINE SULFATE[ATROPINE]|+sep=; |Pill Imprint=M;15 |Pill Dosage=0.025 mg |Pill Color=White|+sep=; |Pill Shape=Round |Pill Size (mm)=6 |Pill Scoring=1 |Pill Image= |Drug Author=Aphena Pharma Solutions - Tennessee, LLC |NDC=675440021
}}
{{#subobject:
|Page Name=Atropine |Pill Name=Diphenoxylate_Hydrochloride_and_Atropine_Sulfate_NDC_03780415.jpg |Drug Name=Diphenoxylate Hydrochloride and Atropine Sulfate |Pill Ingred=DIPHENOXYLATE HYDROCHLORIDE[DIPHENOXYLATE];ATROPINE SULFATE[ATROPINE]|+sep=; |Pill Imprint=M;15 |Pill Dosage=0.025 mg |Pill Color=White|+sep=; |Pill Shape=Round |Pill Size (mm)=6 |Pill Scoring=1 |Pill Image= |Drug Author=Mylan Pharmaceuticals Inc. |NDC=03780415
}}
{{#subobject:
|Page Name=Atropine |Pill Name=Donnatal_Extentabs_NDC_662130421.jpg |Drug Name=Donnatal Extentabs |Pill Ingred=Phenobarbital[Phenobarbital];HYOSCYAMINE SULFATE[HYOSCYAMINE];ATROPINE SULFATE[ATROPINE];SCOPOLAMINE HYDROBROMIDE[SCOPOLAMINE]|+sep=; |Pill Imprint=P;421;421 |Pill Dosage=0.0582 mg |Pill Color=Green|+sep=; |Pill Shape=Round |Pill Size (mm)=10 |Pill Scoring=1 |Pill Image= |Drug Author=PBM Pharmaceuticals, Inc |NDC=662130421
}}
Chemistry and pharmacology
Atropine is a racemic mixture of D-hyoscyamine and L-hyoscyamine, with most of its physiological effects due to L-hyoscyamine. Its pharmacological effects are due to binding to muscarinic acetylcholine receptors. It is an antimuscarinic agent.
The most common atropine compound used in medicine is atropine sulfate (C17H23NO3)2·H2SO4·H2O, the full chemical name is 1α H, 5α H-Tropan-3-α ol (±)-tropate(ester), sulfate monohydrate.
History
Mandragora (mandrake) was described by Theophrastus in the fourth century B.C. for treatment of wounds, gout, and sleeplessness, and as a love potion. By the first century A.D. Dioscorides recognized wine of mandrake as an anaesthetic for treatment of pain or sleeplessness, to be given prior to surgery or cautery.[2] The use of Solanaceae containing tropane alkaloids for anaesthesia, often in combination with opium, persisted throughout the Roman and Islamic Empires and continued in Europe until superseded by the use of ether, chloroform, and other modern anaesthetics.
Atropine extracts from the Egyptian henbane were used by Cleopatra in the last century B.C. to dilate her pupils, in the hope that she would appear more alluring. In the Renaissance, women used the juice of the berries of Atropa belladonna to enlarge the pupils of their eyes, for cosmetic reasons; "bella donna" is Italian for "beautiful lady".
The mydriatic effects of atropine were studied among others by the German chemist Friedrich Ferdinand Runge (1795–1867). In 1831 the pharmacist Mein succeeded the pure crystalline isolation of atropine. The substance was first synthesized by German chemist Richard Willstätter in 1901.
Natural sources
Atropine is found in many members of the Solanaceae family. The most commonly found sources are Atropa belladonna, Datura inoxia, D. metel, and D. stramonium. Other sources include members of the Brugmansia and Hyoscyamus genera. The Nicotiana genus (including the tobacco plant, N. tabacum) is also found in the Solanaceae family, but these plants do not contain atropine or other tropane alkaloids.
See also
References
- ↑ http://www.eperc.mcw.edu/fastFact/ff_109.htm
- ↑ 2.0 2.1 Robert S. Holzman, MD (1998-07). "The Legacy of Atropos". Anesthesiology. pp. 241–249. Check date values in:
|date=
(help) citing J. Arena, Poisoning: Toxicology-Symptoms-Treatments, 3rd edition. Springfield, Charles C. Thomas, 1974, p 345 - ↑ Szajewski J (1995). "Acute anticholinergic syndrome". IPCS Intox Databank.
Template:Drugs for functional gastrointestinal disorders Template:Mydriatics and cycloplegics Template:Deliriants Template:Emergency medicine
bg:Атропин cs:Atropin de:Atropin eo:Atropino it:Atropina he:אטרופין lt:Atropinas nl:Atropine no:Atropin sk:Atropín sl:Atropin sr:Атропин fi:Atropiini sv:Atropin uk:Атропін
- Pages with script errors
- CS1 errors: dates
- Drugs with non-standard legal status
- E number from Wikidata
- ECHA InfoCard ID from Wikidata
- Chemical articles with unknown parameter in Infobox drug
- Articles without EBI source
- Chemical pages without ChemSpiderID
- Articles without KEGG source
- Articles without InChI source
- Articles without UNII source
- Articles containing unverified chemical infoboxes
- All articles with unsourced statements
- Articles with unsourced statements from February 2007
- Articles with invalid date parameter in template
- Natural tropane alkaloids
- Antidotes
- Deliriants
- Muscarinic antagonists
- Drugs