C14orf159: Difference between revisions

Jump to navigation Jump to search
m (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}))
 
m (Bot: HTTP→HTTPS)
 
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''UPF0317 protein C14orf159, mitochondrial''' is a [[protein]] that in humans is encoded by the ''C14orf159'' [[gene]] (chromosome 14 open reading frame 159).<ref name="entrez">{{cite web | title = Entrez Gene: C14orf159 chromosome 14 open reading frame 159| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=80017| accessdate = }}</ref>
| update_page = yes
 
| require_manual_inspection = no
== Orthologs ==
| update_protein_box = yes
{{Original research|section|date=January 2011}}
| update_summary = yes
The human gene, c14orf159 mRNA, is highly conserved in mammals and birds.<ref>BLAST. NCBI. accessed 19 April 2010. http://blast.ncbi.nlm.nih.gov/Blast.cgi</ref> [[Ortholog]]s gathered from BLAST and BLAT searches reveal that the human c14orf159 mRNA sequence is conserved with a sequence identity of 98% in [[chimpanzee]]s, 88% in [[mouse|mice]], and 81% in [[platypus]] and [[chicken]].<ref>[http://genome.ucsc.edu/ UCSC Genome Browser website, BLAT.] accessed 10 April 2010.</ref><ref>[http://blast.ncbi.nlm.nih.gov/Blast.cgi BLAST. NCBI.] accessed 19 April 2010.</ref> The following table contains a list orthologs that were gathered from BLAST searches.  Sequence alignments were performed using blastn to derive sequence identity, score, and E-values between the human c14orf159 variant 1 mRNA and its orthologs.
| update_citations = yes
 
}}
{|border="1" cellpadding="5" cellspacing="0" align="center"
|-
! style="background:#efefef;" | Genus and species
! style="background:#efefef;" | Common name
! style="background:#efefef;" | NCBI accession number
! style="background:#efefef;" | Sequence length (bp)
! style="background:#efefef;" | Sequence identity
! style="background:#efefef;" | Score
! style="background:#efefef;" | E-value
|-
|''[[Human|Homo sapiens]]''
|Human
|NM_001102366
|3164
|100%
|
|0
|-
|''[[Common chimpanzee|Pan troglodytes]]''
|Chimpanzee
|XM_510121
|2974
|98%
|4281
|0
|-
|''[[House mouse|Mus musculus]]''
|Mouse
|NM_145448
|3231
|88%
|495
|0
|-
|''[[Platypus|Ornithorhynchus anatinus]]''
|Platypus
|XM_00154336.1
|1962
|81%
|217
|0
|-
|''[[Red junglefowl|Gallus gallus]]''
|Chicken
|XM_421319
|3389
|81
|50
|0
|+ Human C14orf159 Orthologs-mRNA
|}
 
The protein that the human gene c14orf159 encodes has been found to be highly conserved among mammals, birds, amphibians, fish, [[tunicate]]s, [[cnidaria]]ns, and [[echinoderm]]s.  However, no protein orthologs have been found in [[nematode]]s, [[arthropod]]s, fungi, protists, plants, bacteria, or [[archea]].  Fungi and bacteria contain the DUF1445 conserved domain which is found in human c14orf159 and its orthologs.  BLAST and BLAT searches have been utilized to find orthologs to the c14orf159 protein.  The following table lists protein orthologs for the human protein with sequence identity, sequence similarity, scores, and E-values derived from blastp sequence comparisons.<ref>Blastp. NCBI. http://blast.ncbi.nlm.nih.gov/Blast.cgi</ref>
 
{|border="1" cellpadding="5" cellspacing="0" align="center"
|-
! style="background:#efefef;" | Genus and species
! style="background:#efefef;" | Common name
! style="background:#efefef;" | NCBI accession number
! style="background:#efefef;" | Sequence length-amino acids
! style="background:#efefef;" | Sequence identity
! style="background:#efefef;" | Sequence similarity
! style="background:#efefef;" | Score
! style="background:#efefef;" | E-value
|-
|''Homo sapiens''
|Human
|NP_001095839.1
|564
|100%
|100%
|
|0
|-
|''Pan troglodytes''
|Chimpanzee
|XP_510121.2
|724
|557/621 (89%)
|561/621 (90%)
|1109
|0
|-
|''[[Giant panda|Ailuropoda melanoleuca]]''
|Panda
|EFB15996.1
|585
|413/585 (70%)
|461/585 (78%)
|824
|0
|-
|''[[Brown rat|Rattus norvegicus]]''
|Rat
|XP_343096.2
|618
|423/618 (68%)
|470/618 (76%)
|774
|0
|-
|''Mus musculus''
|Mouse
|NP_663423.2
|617
|414/623 (66%)
|468/621 (75%)
|796
|0
|-
|''[[Horse|Equus caballus]]''
|Horse
|XP_001916913.1
|581
|390/585 (66%)
|433/585 (74%)
|728
|6E-115
|-
|''Ornithorhynchus anatinus''
|Platypus
|XP_001514386.1
|653
|358/628 (57%)
|443/628 (70%)
|696
|0
|-
|''Gallus gallus''
|Chicken
|XP_421319.2
|617
|330/614 (53%)
|414/614 (67%)
|630
|0
|-
|''[[Western clawed frog|Xenopus tropicalis]]''
|Western clawed frog
|CAJ82045.1
|616
|302/611 (49%)
|399/611 (65%)
|582
|1E-170
|-
|''[[Zebrafish|Danio rerio]]''
|Zebrafish
|AAI244131.1
|621
|284/607 (46%)
|386/607 (63%)
|530
|6E-155
|-
|''[[Branchiostoma floridae]]''
|Lancelet
|XP_002612376.1
|615
|237/611 (38%)
|334/611 (54%)
|397
|6E-115
|-
|''[[Ciona intestinalis]]''
|Vase tunicate
|XP_001173256
|486
|161/501 (32%)
|241/501 (48%)
|244
|5E-69
|-
|''[[Strongylocentrotus purpuratus]]''
|California purple sea urchin
|XP_782739.1
|631
|9/33 (27%)
|15/33 (45%)
|320
|5E-87
|-
|''[[Starlet sea anemone|Nematostella vectensis]]''
|Starlet sea anemone
|XP_001637867
|529
|134/501 (26%)
|211/501 (42%)
|120
|1E-31
|-
|+ Human C14orf159 Orthologs-protein
|}
 
== Post-translational modification ==
 
The protein product of the C14orf159 gene is predicted<ref name="entrez"/> and was found<ref name="urlTable">{{cite web | url = http://www.dkfz.de/LIFEdb/(2ij04255g3tubn45u1j3kl45)/Table.aspx | title = RZPD CloneID DKFZp686J0759 | vauthors = Mehrle A, Rosenfelder H | date = | format = | work = LifeDB: Database for Localization, Interaction, Functional assays and Expression of Proteins| publisher = German Cancer Research Center | pages = | language = | archiveurl = | archivedate = | quote = | accessdate = }}</ref><ref name="pmid15489336">{{cite journal | vauthors = Wiemann S, Arlt D, Huber W, Wellenreuther R, Schleeger S, Mehrle A, Bechtel S, Sauermann M, Korf U, Pepperkok R, Sültmann H, Poustka A | title = From ORFeome to Biology: A Functional Genomics Pipeline | journal = Genome Res. | volume = 14 | issue = 10B | pages = 2136–44 |date=October 2004 | pmid = 15489336 | pmc = 528930 | doi = 10.1101/gr.2576704 | url =  }}</ref> to be [[protein targeting|translocated]] to [[mitochondrion]].
 
Post-translational modifications are predicted for the protein c14orf159.  All predicted sites in human c14orf159 were compared to orthologs using multiple sequence alignments to determine likelihood of modification.<ref>Prediction of glycosylation across the human proteome and the correlation to protein function. Gupta, R. and S. Brunak. Pacific Symposium on Biocomputing, 7:310-322, 2002 <http://www.cbs.dtu.dk/services/YinOYang/>.</ref><ref>Locating proteins in the cell using TargetP, SignalP, and related tools Olof Emanuelsson, Søren Brunak, Gunnar von Heijne, Henrik Nielsen Nature Protocols 2, 953-971 (2007) http://www.cbs.dtu.dk/services/SignalP/.</ref><ref>Scanning the available Dictyostelium discoideum proteome for O-linked GlcNAc glycosylation sites using neural networks. R. Gupta, E. Jung, A.A. Gooley, K.L. Williams, S. Brunak and J. Hansen. Glycobiology: 9(10):1009-22, 1999 http://www.cbs.dtu.dk/services/DictyOGlyc/.</ref><ref>Analysis and prediction of mammalian protein glycation. Morten Bo Johansen, Lars Kiemer and Søren Brunak Glycobiology, 16:844-853, 2006 http://www.cbs.dtu.dk/services/NetGlycate/.</ref>
<ref>Sulfinator. Expasy tools. 2010. http://expasy.org/tools/sulfinator/.</ref>


<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
== Regulation ==
{{GNF_Protein_box
| image =
| image_source =
| PDB =  
| Name = Chromosome 14 open reading frame 159
| HGNCid = 20498
| Symbol = C14orf159
| AltSymbols =; C14orf160; FLJ20950; FLJ39975
| OMIM = 
| ECnumber = 
| Homologene = 11798
| MGIid = 2444813
| GeneAtlas_image1 = PBB_GE_C14orf159_218298_s_at_tn.png
| Function =
| Component = {{GNF_GO|id=GO:0005739 |text = mitochondrion}}
| Process =
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 80017
    | Hs_Ensembl = ENSG00000133943
    | Hs_RefseqProtein = NP_079228
    | Hs_RefseqmRNA = NM_024952
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = 14
    | Hs_GenLoc_start = 90650164
    | Hs_GenLoc_end = 90761449
    | Hs_Uniprot = Q7Z3D6
    | Mm_EntrezGene = 217830
    | Mm_Ensembl = ENSMUSG00000021185
    | Mm_RefseqmRNA = NM_145448
    | Mm_RefseqProtein = NP_663423
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 12
    | Mm_GenLoc_start = 101180173
    | Mm_GenLoc_end = 101273660
    | Mm_Uniprot = Q3U7K4
  }}
}}
'''Chromosome 14 open reading frame 159''', also known as '''C14orf159''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: C14orf159 chromosome 14 open reading frame 159| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=80017| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
[[Estrogen receptor alpha]], in the presence of [[estradiol]], binds to the C14orf159 gene and likely regulates its expression.<ref name="pmid17275994">{{cite journal | vauthors = Creekmore AL, Ziegler YS, Bonéy JL, Nardulli AM | title = Estrogen receptor α regulates expression of the breast cancer 1 associated ring domain 1 (BARD1) gene through intronic DNA sequence | journal = Mol. Cell. Endocrinol. | volume = 267 | issue = 1–2 | pages = 106–15 |date=March 2007 | pmid = 17275994 | pmc = 1933484 | doi = 10.1016/j.mce.2007.01.001 | url =  }}</ref>
{{PBB_Summary
| section_title =  
| summary_text =  
}}


==References==
==References==
{{reflist|2}}
{{reflist|2}}
==External links==
* {{UCSC gene info|C14orf159}}
==Further reading==
==Further reading==
{{refbegin | 2}}
{{refbegin | 2}}
{{PBB_Further_reading  
{{PBB_Further_reading
| citations =  
| citations =  
*{{cite journal  | author=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. |journal=Gene |volume=138 |issue= 1-2 |pages= 171-4 |year= 1994 |pmid= 8125298 |doi=  }}
*{{cite journal  | vauthors=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides |journal=Gene |volume=138 |issue= 1–2 |pages= 171–4 |year= 1994 |pmid= 8125298 |doi=10.1016/0378-1119(94)90802-8 }}
*{{cite journal  | author=Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, ''et al.'' |title=Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library. |journal=Gene |volume=200 |issue= 1-2 |pages= 149-56 |year= 1997 |pmid= 9373149 |doi=  }}
*{{cite journal  | vauthors=Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K |title=Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library |journal=Gene |volume=200 |issue= 1–2 |pages= 149–56 |year= 1997 |pmid= 9373149 |doi=10.1016/S0378-1119(97)00411-3 |display-authors=etal}}
*{{cite journal  | author=Hartley JL, Temple GF, Brasch MA |title=DNA cloning using in vitro site-specific recombination. |journal=Genome Res. |volume=10 |issue= 11 |pages= 1788-95 |year= 2001 |pmid= 11076863 |doi=  }}
*{{cite journal  | vauthors=Hartley JL, Temple GF, Brasch MA |title=DNA Cloning Using In Vitro Site-Specific Recombination |journal=Genome Res. |volume=10 |issue= 11 |pages= 1788–95 |year= 2001 |pmid= 11076863 |doi=10.1101/gr.143000  | pmc=310948 }}
*{{cite journal  | author=Wiemann S, Weil B, Wellenreuther R, ''et al.'' |title=Toward a catalog of human genes and proteins: sequencing and analysis of 500 novel complete protein coding human cDNAs. |journal=Genome Res. |volume=11 |issue= 3 |pages= 422-35 |year= 2001 |pmid= 11230166 |doi= 10.1101/gr.154701 }}
*{{cite journal  | vauthors=Wiemann S, Weil B, Wellenreuther R |title=Toward a Catalog of Human Genes and Proteins: Sequencing and Analysis of 500 Novel Complete Protein Coding Human cDNAs |journal=Genome Res. |volume=11 |issue= 3 |pages= 422–35 |year= 2001 |pmid= 11230166 |doi= 10.1101/gr.GR1547R  | pmc=311072 |display-authors=etal}}
*{{cite journal  | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899-903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}
*{{cite journal  | vauthors=Strausberg RL, Feingold EA, Grouse LH |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 |display-authors=etal}}
*{{cite journal  | author=Clark HF, Gurney AL, Abaya E, ''et al.'' |title=The secreted protein discovery initiative (SPDI), a large-scale effort to identify novel human secreted and transmembrane proteins: a bioinformatics assessment. |journal=Genome Res. |volume=13 |issue= 10 |pages= 2265-70 |year= 2003 |pmid= 12975309 |doi= 10.1101/gr.1293003 }}
*{{cite journal  | vauthors=Clark HF, Gurney AL, Abaya E |title=The Secreted Protein Discovery Initiative (SPDI), a Large-Scale Effort to Identify Novel Human Secreted and Transmembrane Proteins: A Bioinformatics Assessment |journal=Genome Res. |volume=13 |issue= 10 |pages= 2265–70 |year= 2003 |pmid= 12975309 |doi= 10.1101/gr.1293003 | pmc=403697 |display-authors=etal}}
*{{cite journal  | author=Ota T, Suzuki Y, Nishikawa T, ''et al.'' |title=Complete sequencing and characterization of 21,243 full-length human cDNAs. |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40-5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 }}
*{{cite journal  | vauthors=Ota T, Suzuki Y, Nishikawa T |title=Complete sequencing and characterization of 21,243 full-length human cDNAs |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40–5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 |display-authors=etal}}
*{{cite journal  | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121-7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}
*{{cite journal  | vauthors=Gerhard DS, Wagner L, Feingold EA |title=The Status, Quality, and Expansion of the NIH Full-Length cDNA Project: The Mammalian Gene Collection (MGC) |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504  | pmc=528928 |display-authors=etal}}
*{{cite journal | author=Wiemann S, Arlt D, Huber W, ''et al.'' |title=From ORFeome to biology: a functional genomics pipeline. |journal=Genome Res. |volume=14 |issue= 10B |pages= 2136-44 |year= 2004 |pmid= 15489336 |doi= 10.1101/gr.2576704 }}
*{{cite journal  | vauthors=Cheng J, Kapranov P, Drenkow J |title=Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution |journal=Science |volume=308 |issue= 5725 |pages= 1149–54 |year= 2005 |pmid= 15790807 |doi= 10.1126/science.1108625 |display-authors=etal}}
*{{cite journal  | author=Cheng J, Kapranov P, Drenkow J, ''et al.'' |title=Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. |journal=Science |volume=308 |issue= 5725 |pages= 1149-54 |year= 2005 |pmid= 15790807 |doi= 10.1126/science.1108625 }}
*{{cite journal  | vauthors=Kimura K, Wakamatsu A, Suzuki Y |title=Diversification of transcriptional modulation: Large-scale identification and characterization of putative alternative promoters of human genes |journal=Genome Res. |volume=16 |issue= 1 |pages= 55–65 |year= 2006 |pmid= 16344560 |doi= 10.1101/gr.4039406 | pmc=1356129 |display-authors=etal}}
*{{cite journal  | author=Kimura K, Wakamatsu A, Suzuki Y, ''et al.'' |title=Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes. |journal=Genome Res. |volume=16 |issue= 1 |pages= 55-65 |year= 2006 |pmid= 16344560 |doi= 10.1101/gr.4039406 }}
*{{cite journal  | vauthors=Mehrle A, Rosenfelder H, Schupp I |title=The LIFEdb database in 2006 |journal=Nucleic Acids Res. |volume=34 |issue= Database issue |pages= D415–8 |year= 2006 |pmid= 16381901 |doi= 10.1093/nar/gkj139 | pmc=1347501 |display-authors=etal}}
*{{cite journal  | author=Mehrle A, Rosenfelder H, Schupp I, ''et al.'' |title=The LIFEdb database in 2006. |journal=Nucleic Acids Res. |volume=34 |issue= Database issue |pages= D415-8 |year= 2006 |pmid= 16381901 |doi= 10.1093/nar/gkj139 }}
}}
}}
{{refend}}
{{refend}}


{{protein-stub}}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{WikiDoc Sources}}
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = no
| update_citations = no
}}
 
[[Category:Human proteins]]

Latest revision as of 08:54, 30 August 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

UPF0317 protein C14orf159, mitochondrial is a protein that in humans is encoded by the C14orf159 gene (chromosome 14 open reading frame 159).[1]

Orthologs

The human gene, c14orf159 mRNA, is highly conserved in mammals and birds.[2] Orthologs gathered from BLAST and BLAT searches reveal that the human c14orf159 mRNA sequence is conserved with a sequence identity of 98% in chimpanzees, 88% in mice, and 81% in platypus and chicken.[3][4] The following table contains a list orthologs that were gathered from BLAST searches. Sequence alignments were performed using blastn to derive sequence identity, score, and E-values between the human c14orf159 variant 1 mRNA and its orthologs.

Genus and species Common name NCBI accession number Sequence length (bp) Sequence identity Score E-value
Homo sapiens Human NM_001102366 3164 100% 0
Pan troglodytes Chimpanzee XM_510121 2974 98% 4281 0
Mus musculus Mouse NM_145448 3231 88% 495 0
Ornithorhynchus anatinus Platypus XM_00154336.1 1962 81% 217 0
Gallus gallus Chicken XM_421319 3389 81 50 0
Human C14orf159 Orthologs-mRNA

The protein that the human gene c14orf159 encodes has been found to be highly conserved among mammals, birds, amphibians, fish, tunicates, cnidarians, and echinoderms. However, no protein orthologs have been found in nematodes, arthropods, fungi, protists, plants, bacteria, or archea. Fungi and bacteria contain the DUF1445 conserved domain which is found in human c14orf159 and its orthologs. BLAST and BLAT searches have been utilized to find orthologs to the c14orf159 protein. The following table lists protein orthologs for the human protein with sequence identity, sequence similarity, scores, and E-values derived from blastp sequence comparisons.[5]

Genus and species Common name NCBI accession number Sequence length-amino acids Sequence identity Sequence similarity Score E-value
Homo sapiens Human NP_001095839.1 564 100% 100% 0
Pan troglodytes Chimpanzee XP_510121.2 724 557/621 (89%) 561/621 (90%) 1109 0
Ailuropoda melanoleuca Panda EFB15996.1 585 413/585 (70%) 461/585 (78%) 824 0
Rattus norvegicus Rat XP_343096.2 618 423/618 (68%) 470/618 (76%) 774 0
Mus musculus Mouse NP_663423.2 617 414/623 (66%) 468/621 (75%) 796 0
Equus caballus Horse XP_001916913.1 581 390/585 (66%) 433/585 (74%) 728 6E-115
Ornithorhynchus anatinus Platypus XP_001514386.1 653 358/628 (57%) 443/628 (70%) 696 0
Gallus gallus Chicken XP_421319.2 617 330/614 (53%) 414/614 (67%) 630 0
Xenopus tropicalis Western clawed frog CAJ82045.1 616 302/611 (49%) 399/611 (65%) 582 1E-170
Danio rerio Zebrafish AAI244131.1 621 284/607 (46%) 386/607 (63%) 530 6E-155
Branchiostoma floridae Lancelet XP_002612376.1 615 237/611 (38%) 334/611 (54%) 397 6E-115
Ciona intestinalis Vase tunicate XP_001173256 486 161/501 (32%) 241/501 (48%) 244 5E-69
Strongylocentrotus purpuratus California purple sea urchin XP_782739.1 631 9/33 (27%) 15/33 (45%) 320 5E-87
Nematostella vectensis Starlet sea anemone XP_001637867 529 134/501 (26%) 211/501 (42%) 120 1E-31
Human C14orf159 Orthologs-protein

Post-translational modification

The protein product of the C14orf159 gene is predicted[1] and was found[6][7] to be translocated to mitochondrion.

Post-translational modifications are predicted for the protein c14orf159. All predicted sites in human c14orf159 were compared to orthologs using multiple sequence alignments to determine likelihood of modification.[8][9][10][11] [12]

Regulation

Estrogen receptor alpha, in the presence of estradiol, binds to the C14orf159 gene and likely regulates its expression.[13]

References

  1. 1.0 1.1 "Entrez Gene: C14orf159 chromosome 14 open reading frame 159".
  2. BLAST. NCBI. accessed 19 April 2010. http://blast.ncbi.nlm.nih.gov/Blast.cgi
  3. UCSC Genome Browser website, BLAT. accessed 10 April 2010.
  4. BLAST. NCBI. accessed 19 April 2010.
  5. Blastp. NCBI. http://blast.ncbi.nlm.nih.gov/Blast.cgi
  6. Mehrle A, Rosenfelder H. "RZPD CloneID DKFZp686J0759". LifeDB: Database for Localization, Interaction, Functional assays and Expression of Proteins. German Cancer Research Center.
  7. Wiemann S, Arlt D, Huber W, Wellenreuther R, Schleeger S, Mehrle A, Bechtel S, Sauermann M, Korf U, Pepperkok R, Sültmann H, Poustka A (October 2004). "From ORFeome to Biology: A Functional Genomics Pipeline". Genome Res. 14 (10B): 2136–44. doi:10.1101/gr.2576704. PMC 528930. PMID 15489336.
  8. Prediction of glycosylation across the human proteome and the correlation to protein function. Gupta, R. and S. Brunak. Pacific Symposium on Biocomputing, 7:310-322, 2002 <http://www.cbs.dtu.dk/services/YinOYang/>.
  9. Locating proteins in the cell using TargetP, SignalP, and related tools Olof Emanuelsson, Søren Brunak, Gunnar von Heijne, Henrik Nielsen Nature Protocols 2, 953-971 (2007) http://www.cbs.dtu.dk/services/SignalP/.
  10. Scanning the available Dictyostelium discoideum proteome for O-linked GlcNAc glycosylation sites using neural networks. R. Gupta, E. Jung, A.A. Gooley, K.L. Williams, S. Brunak and J. Hansen. Glycobiology: 9(10):1009-22, 1999 http://www.cbs.dtu.dk/services/DictyOGlyc/.
  11. Analysis and prediction of mammalian protein glycation. Morten Bo Johansen, Lars Kiemer and Søren Brunak Glycobiology, 16:844-853, 2006 http://www.cbs.dtu.dk/services/NetGlycate/.
  12. Sulfinator. Expasy tools. 2010. http://expasy.org/tools/sulfinator/.
  13. Creekmore AL, Ziegler YS, Bonéy JL, Nardulli AM (March 2007). "Estrogen receptor α regulates expression of the breast cancer 1 associated ring domain 1 (BARD1) gene through intronic DNA sequence". Mol. Cell. Endocrinol. 267 (1–2): 106–15. doi:10.1016/j.mce.2007.01.001. PMC 1933484. PMID 17275994.

External links

Further reading