DDX3X: Difference between revisions
m (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}})) |
m (Bot: HTTP→HTTPS) |
||
Line 1: | Line 1: | ||
< | {{Infobox_gene}} | ||
{{ | '''ATP-dependent [[:en:Helicase#RNA helicases|RNA helicase]] DDX3X''' is an [[enzyme]] that in humans is encoded by the ''DDX3X'' [[gene]].<ref name="pmid9381176">{{cite journal |vauthors=Lahn BT, Page DC | title = Functional coherence of the human Y chromosome | journal = Science | volume = 278 | issue = 5338 | pages = 675–680 |date=Nov 1997 | pmid = 9381176 | pmc = | doi =10.1126/science.278.5338.675 }}</ref><ref name="pmid9730595">{{cite journal |vauthors=Park SH, Lee SG, Kim Y, Song K | title = Assignment of a human putative RNA helicase gene, DDX3, to human X chromosome bands p11.3→p11.23 | journal = Cytogenet Cell Genet | volume = 81 | issue = 3–4 | pages = 178–179 |date=Oct 1998 | pmid = 9730595 | pmc = | doi =10.1159/000015022 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: DDX3X DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1654| accessdate = }}</ref> | ||
| | |||
| | |||
| | |||
| | |||
| | |||
}} | |||
== Function == | |||
DEAD box proteins, characterized by the conserved motif Asp-Glu-Ala-Asp (DEAD), are putative RNA helicases. They are implicated in a number of cellular processes involving alteration of RNA secondary structure such as translation initiation, nuclear and mitochondrial splicing, and ribosome and spliceosome assembly. Based on their distribution patterns, some members of this family are believed to be involved in embryogenesis, spermatogenesis, and cellular growth and division. This gene encodes a DEAD box protein, which interacts specifically with hepatitis C virus core protein resulting a change in intracellular location. This gene has a homolog located in the nonrecombining region of the Y chromosome. The protein sequence is 91% identical between this gene and the Y-linked homolog.<ref name="entrez"/> | |||
== Role in cancer == | |||
DDX3X is involved in many different types of cancer. For example, it is abnormally expressed in breast epithelial cancer cells in which its expression is activated by [[:en:HIF1A|HIF1A]] during [[:en:Tumor hypoxia|hypoxia]].<ref name=":0">{{Cite web|url = http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0017563|title = Expression of DDX3 is directly modulated by hypoxia inducible factor-1 alpha in breast epithelial cells|date = 2011-03-23|accessdate = |website = |publisher = PLoS ONE|doi = 10.1371/journal.pone.0017563}}</ref> Increased expression of DDX3X by HIF1A in hypoxia is initiated by the direct binding of HIF1A to the HIF1A [[:en:Transcription factor#Response elements|response element]],<ref name=":0" /> as verified with [[:en:Chromatin immunoprecipitation|chromatin immunoprecipitation]] and [[:en:Luciferase|luciferase reporter assay]]. Since the expression of DDX3X is affected by the activity of HIF1A, the co-localization of these proteins has also been demonstrated in MDA-MB-231 [[:en:Xenograft|xenograft]] tumor samples.<ref name=":0" /> | |||
}} | |||
In [[:en:HeLa|HeLa cells]] DDX3X is reported to control cell cycle progression through [[:en:Cyclin E1|Cyclin E1]].<ref name=":1">{{Cite web|url = http://mcb.asm.org/content/30/22/5444.long|title = DDX3 Regulates Cell Growth through Translational Control of Cyclin E1|date = November 2010|accessdate = |website = |publisher = Molecular and Cellular Biology|doi = 10.1128/MCB.00560-10}}</ref> More specifically, DDX3X was shown to directly bind to the [[:en:Five prime untranslated region|5´ UTR]] of Cyclin E1 and thereby facilitating the translation of the protein. Increased protein levels of Cyclin E1 was demonstrated to mediate the transition of [[:en:S phase|S phase]] entry.<ref name=":1" /> | |||
== Clinical significance == | |||
Mutations of the ''DDX3X'' gene are also associated with [[medulloblastoma]].<ref>{{cite journal |vauthors=Robinson G, Parker M, Kranenburg TA | title = Novel mutations target distinct subgroups of medulloblastoma | journal = Nature |date=June 2012 | doi = 10.1038/nature11213 | volume=488 | issue=7409|display-authors=etal | pages=43–48}}</ref><ref>{{cite journal |vauthors=Jones TW, Jäger N, Kool M | title = Dissecting the genomic complexity underlying medulloblastoma | journal = Nature |date=July 2012 | doi = 10.1038/nature11284 | pmid=22832583 | volume=488 | issue=7409 | pages=100–5 | pmc=3662966|display-authors=etal}}</ref><ref>{{cite journal |vauthors=Pugh TJ, Weeraratne SD, Archer TC | title = Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations | journal = Nature |date=July 2012 | doi = 10.1038/nature11329 |display-authors=etal | volume=488 | pages=106–110 | pmid=22820256 | pmc=3413789}}</ref> | |||
==References== | ==References== | ||
{{reflist | {{reflist}} | ||
==Further reading== | ==Further reading== | ||
{{refbegin | 2}} | {{refbegin | 2}} | ||
*{{cite journal | author=Li L |title=Roles of HIV-1 auxiliary proteins in viral pathogenesis and host-pathogen interactions |journal=Cell Res. |volume=15 |issue= 11–12 |pages= 923–934 |year= 2006 |pmid= 16354571 |doi= 10.1038/sj.cr.7290370 |name-list-format=vanc| author2=Li HS | author3=Pauza CD | display-authors=3 | last4=Bukrinsky | first4=Michael | last5=Zhao | first5=Richard Y }} | |||
*{{cite journal |vauthors=Owsianka AM, Patel AH |title=Hepatitis C virus core protein interacts with a human DEAD box protein DDX3 |journal=Virology |volume=257 |issue= 2 |pages= 330–340 |year= 1999 |pmid= 10329544 |doi= 10.1006/viro.1999.9659 }} | |||
*{{cite journal | author=Li L | *{{cite journal |vauthors=Mamiya N, Worman HJ |title=Hepatitis C virus core protein binds to a DEAD box RNA helicase |journal=J. Biol. Chem. |volume=274 |issue= 22 |pages= 15751–15756 |year= 1999 |pmid= 10336476 |doi=10.1074/jbc.274.22.15751 }} | ||
*{{cite journal | author=Yagüe J |title=An N-acetylated natural ligand of human histocompatibility leukocyte antigen (HLA)-B39. Classical major histocompatibility complex class I proteins bind peptides with a blocked NH(2) terminus in vivo |journal=J. Exp. Med. |volume=191 |issue= 12 |pages= 2083–2092 |year= 2000 |pmid= 10859333 |doi=10.1084/jem.191.12.2083 | pmc=2193201 |name-list-format=vanc| author2=Alvarez I | author3=Rognan D | display-authors=3 | last4=Ramos | first4=M | last5=Vázquez | first5=J | last6=De Castro | first6=JA }} | |||
*{{cite journal | | *{{cite journal |vauthors=Kim YS, Lee SG, Park SH, Song K |title=Gene structure of the human DDX3 and chromosome mapping of its related sequences |journal=Mol. Cells |volume=12 |issue= 2 |pages= 209–14 |year= 2002 |pmid= 11710523 |doi= }} | ||
*{{cite journal | | *{{cite journal | author=Strausberg RL |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–16903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 |name-list-format=vanc| author2=Feingold EA | author3=Grouse LH | display-authors=3 | last4=Derge | first4=JG | last5=Klausner | first5=RD | last6=Collins | first6=FS | last7=Wagner | first7=L | last8=Shenmen | first8=CM | last9=Schuler | first9=GD }} | ||
*{{cite journal | author= | *{{cite journal | author=Li J |title=Regulation of alternative splicing by SRrp86 and its interacting proteins |journal=Mol. Cell. Biol. |volume=23 |issue= 21 |pages= 7437–7447 |year= 2003 |pmid= 14559993 |doi=10.1128/MCB.23.21.7437-7447.2003 | pmc=207616 |name-list-format=vanc| author2=Hawkins IC | author3=Harvey CD | display-authors=3 | last4=Jennings | first4=J. L. | last5=Link | first5=A. J. | last6=Patton | first6=J. G. }} | ||
*{{cite journal | author=Shu H |title=Identification of phosphoproteins and their phosphorylation sites in the WEHI-231 B lymphoma cell line |journal=Mol. Cell. Proteomics |volume=3 |issue= 3 |pages= 279–286 |year= 2004 |pmid= 14729942 |doi= 10.1074/mcp.D300003-MCP200 |name-list-format=vanc| author2=Chen S | author3=Bi Q | display-authors=3 | last4=Mumby | first4=M | last5=Brekken | first5=DL }} | |||
*{{cite journal | author= | *{{cite journal | author=Bouwmeester T |title=A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway |journal=Nat. Cell Biol. |volume=6 |issue= 2 |pages= 97–105 |year= 2004 |pmid= 14743216 |doi= 10.1038/ncb1086 |name-list-format=vanc| author2=Bauch A | author3=Ruffner H | display-authors=3 | last4=Angrand | first4=Pierre-Olivier | last5=Bergamini | first5=Giovanna | last6=Croughton | first6=Karen | last7=Cruciat | first7=Cristina | last8=Eberhard | first8=Dirk | last9=Gagneur | first9=Julien }} | ||
*{{cite journal | author=Gerhard DS |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC) |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–2127 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 | pmc=528928 |name-list-format=vanc| author2=Wagner L | author3=Feingold EA | display-authors=3 | last4=Shenmen | first4=CM | last5=Grouse | first5=LH | last6=Schuler | first6=G | last7=Klein | first7=SL | last8=Old | first8=S | last9=Rasooly | first9=R }} | |||
*{{cite journal | author=Li J | *{{cite journal | author=Yedavalli VS |title=Requirement of DDX3 DEAD box RNA helicase for HIV-1 Rev-RRE export function |journal=Cell |volume=119 |issue= 3 |pages= 381–392 |year= 2004 |pmid= 15507209 |doi= 10.1016/j.cell.2004.09.029 |name-list-format=vanc| author2=Neuveut C | author3=Chi YH | display-authors=3 | last4=Kleiman | first4=Lawrence | last5=Jeang | first5=Kuan-Teh }} | ||
*{{cite journal | author=Dayton AI |title=Within you, without you: HIV-1 Rev and RNA export |journal=Retrovirology |volume=1 |issue= |pages= 35 |year= 2006 |pmid= 15516266 |doi= 10.1186/1742-4690-1-35 | pmc=526764 }} | |||
*{{cite journal | author= | *{{cite journal |vauthors=Krishnan V, Zeichner SL |title=Alterations in the expression of DEAD-box and other RNA binding proteins during HIV-1 replication |journal=Retrovirology |volume=1 |issue= |pages= 42 |year= 2006 |pmid= 15588285 |doi= 10.1186/1742-4690-1-42 | pmc=543576 }} | ||
*{{cite journal | author=Rush J |title=Immunoaffinity profiling of tyrosine phosphorylation in cancer cells |journal=Nat. Biotechnol. |volume=23 |issue= 1 |pages= 94–101 |year= 2005 |pmid= 15592455 |doi= 10.1038/nbt1046 |name-list-format=vanc| author2=Moritz A | author3=Lee KA | display-authors=3 | last4=Guo | first4=Ailan | last5=Goss | first5=Valerie L | last6=Spek | first6=Erik J | last7=Zhang | first7=Hui | last8=Zha | first8=Xiang-Ming | last9=Polakiewicz | first9=Roberto D }} | |||
*{{cite journal | author= | *{{cite journal | author=Tao WA |title=Quantitative phosphoproteome analysis using a dendrimer conjugation chemistry and tandem mass spectrometry |journal=Nat. Methods |volume=2 |issue= 8 |pages= 591–598 |year= 2005 |pmid= 16094384 |doi= 10.1038/nmeth776 |name-list-format=vanc| author2=Wollscheid B | author3=O'Brien R | display-authors=3 | last4=Eng | first4=Jimmy K | last5=Li | first5=Xiao-jun | last6=Bodenmiller | first6=Bernd | last7=Watts | first7=Julian D | last8=Hood | first8=Leroy | last9=Aebersold | first9=Ruedi }} | ||
*{{cite journal | author=Gevaert K |title=Global phosphoproteome analysis on human HepG2 hepatocytes using reversed-phase diagonal LC |journal=Proteomics |volume=5 |issue= 14 |pages= 3589–3599 |year= 2006 |pmid= 16097034 |doi= 10.1002/pmic.200401217 |name-list-format=vanc| author2=Staes A | author3=Van Damme J | display-authors=3 | last4=De Groot | first4=Sara | last5=Hugelier | first5=Koen | last6=Demol | first6=Hans | last7=Martens | first7=Lennart | last8=Goethals | first8=Marc | last9=Vandekerckhove | first9=Joël }} | |||
*{{cite journal | author=Rual JF |title=Towards a proteome-scale map of the human protein-protein interaction network |journal=Nature |volume=437 |issue= 7062 |pages= 1173–1178 |year= 2005 |pmid= 16189514 |doi= 10.1038/nature04209 |name-list-format=vanc| author2=Venkatesan K | author3=Hao T | display-authors=3 | last4=Hirozane-Kishikawa | first4=Tomoko | last5=Dricot | first5=Amélie | last6=Li | first6=Ning | last7=Berriz | first7=Gabriel F. | last8=Gibbons | first8=Francis D. | last9=Dreze | first9=Matija }} | |||
*{{cite journal | author= | *{{cite journal | author=Chang PC |title=DDX3, a DEAD box RNA helicase, is deregulated in hepatitis virus-associated hepatocellular carcinoma and is involved in cell growth control |journal=Oncogene |volume=25 |issue= 14 |pages= 1991–2003 |year= 2006 |pmid= 16301996 |doi= 10.1038/sj.onc.1209239 |name-list-format=vanc| author2=Chi CW | author3=Chau GY | display-authors=3 | last4=Li | first4=F-Y | last5=Tsai | first5=Y-H | last6=Wu | first6=J-C | last7=Wu Lee | first7=Y-H }} | ||
*{{cite journal | author= | |||
}} | |||
{{refend}} | {{refend}} | ||
{{ | {{PDB Gallery|geneid=1654}} | ||
Revision as of 18:19, 30 August 2017
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
ATP-dependent RNA helicase DDX3X is an enzyme that in humans is encoded by the DDX3X gene.[1][2][3]
Function
DEAD box proteins, characterized by the conserved motif Asp-Glu-Ala-Asp (DEAD), are putative RNA helicases. They are implicated in a number of cellular processes involving alteration of RNA secondary structure such as translation initiation, nuclear and mitochondrial splicing, and ribosome and spliceosome assembly. Based on their distribution patterns, some members of this family are believed to be involved in embryogenesis, spermatogenesis, and cellular growth and division. This gene encodes a DEAD box protein, which interacts specifically with hepatitis C virus core protein resulting a change in intracellular location. This gene has a homolog located in the nonrecombining region of the Y chromosome. The protein sequence is 91% identical between this gene and the Y-linked homolog.[3]
Role in cancer
DDX3X is involved in many different types of cancer. For example, it is abnormally expressed in breast epithelial cancer cells in which its expression is activated by HIF1A during hypoxia.[4] Increased expression of DDX3X by HIF1A in hypoxia is initiated by the direct binding of HIF1A to the HIF1A response element,[4] as verified with chromatin immunoprecipitation and luciferase reporter assay. Since the expression of DDX3X is affected by the activity of HIF1A, the co-localization of these proteins has also been demonstrated in MDA-MB-231 xenograft tumor samples.[4]
In HeLa cells DDX3X is reported to control cell cycle progression through Cyclin E1.[5] More specifically, DDX3X was shown to directly bind to the 5´ UTR of Cyclin E1 and thereby facilitating the translation of the protein. Increased protein levels of Cyclin E1 was demonstrated to mediate the transition of S phase entry.[5]
Clinical significance
Mutations of the DDX3X gene are also associated with medulloblastoma.[6][7][8]
References
- ↑ Lahn BT, Page DC (Nov 1997). "Functional coherence of the human Y chromosome". Science. 278 (5338): 675–680. doi:10.1126/science.278.5338.675. PMID 9381176.
- ↑ Park SH, Lee SG, Kim Y, Song K (Oct 1998). "Assignment of a human putative RNA helicase gene, DDX3, to human X chromosome bands p11.3→p11.23". Cytogenet Cell Genet. 81 (3–4): 178–179. doi:10.1159/000015022. PMID 9730595.
- ↑ 3.0 3.1 "Entrez Gene: DDX3X DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked".
- ↑ 4.0 4.1 4.2 "Expression of DDX3 is directly modulated by hypoxia inducible factor-1 alpha in breast epithelial cells". PLoS ONE. 2011-03-23. doi:10.1371/journal.pone.0017563.
- ↑ 5.0 5.1 "DDX3 Regulates Cell Growth through Translational Control of Cyclin E1". Molecular and Cellular Biology. November 2010. doi:10.1128/MCB.00560-10.
- ↑ Robinson G, Parker M, Kranenburg TA, et al. (June 2012). "Novel mutations target distinct subgroups of medulloblastoma". Nature. 488 (7409): 43–48. doi:10.1038/nature11213.
- ↑ Jones TW, Jäger N, Kool M, et al. (July 2012). "Dissecting the genomic complexity underlying medulloblastoma". Nature. 488 (7409): 100–5. doi:10.1038/nature11284. PMC 3662966. PMID 22832583.
- ↑ Pugh TJ, Weeraratne SD, Archer TC, et al. (July 2012). "Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations". Nature. 488: 106–110. doi:10.1038/nature11329. PMC 3413789. PMID 22820256.
Further reading
- Li L, Li HS, Pauza CD, et al. (2006). "Roles of HIV-1 auxiliary proteins in viral pathogenesis and host-pathogen interactions". Cell Res. 15 (11–12): 923–934. doi:10.1038/sj.cr.7290370. PMID 16354571.
- Owsianka AM, Patel AH (1999). "Hepatitis C virus core protein interacts with a human DEAD box protein DDX3". Virology. 257 (2): 330–340. doi:10.1006/viro.1999.9659. PMID 10329544.
- Mamiya N, Worman HJ (1999). "Hepatitis C virus core protein binds to a DEAD box RNA helicase". J. Biol. Chem. 274 (22): 15751–15756. doi:10.1074/jbc.274.22.15751. PMID 10336476.
- Yagüe J, Alvarez I, Rognan D, et al. (2000). "An N-acetylated natural ligand of human histocompatibility leukocyte antigen (HLA)-B39. Classical major histocompatibility complex class I proteins bind peptides with a blocked NH(2) terminus in vivo". J. Exp. Med. 191 (12): 2083–2092. doi:10.1084/jem.191.12.2083. PMC 2193201. PMID 10859333.
- Kim YS, Lee SG, Park SH, Song K (2002). "Gene structure of the human DDX3 and chromosome mapping of its related sequences". Mol. Cells. 12 (2): 209–14. PMID 11710523.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–16903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Li J, Hawkins IC, Harvey CD, et al. (2003). "Regulation of alternative splicing by SRrp86 and its interacting proteins". Mol. Cell. Biol. 23 (21): 7437–7447. doi:10.1128/MCB.23.21.7437-7447.2003. PMC 207616. PMID 14559993.
- Shu H, Chen S, Bi Q, et al. (2004). "Identification of phosphoproteins and their phosphorylation sites in the WEHI-231 B lymphoma cell line". Mol. Cell. Proteomics. 3 (3): 279–286. doi:10.1074/mcp.D300003-MCP200. PMID 14729942.
- Bouwmeester T, Bauch A, Ruffner H, et al. (2004). "A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway". Nat. Cell Biol. 6 (2): 97–105. doi:10.1038/ncb1086. PMID 14743216.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)". Genome Res. 14 (10B): 2121–2127. doi:10.1101/gr.2596504. PMC 528928. PMID 15489334.
- Yedavalli VS, Neuveut C, Chi YH, et al. (2004). "Requirement of DDX3 DEAD box RNA helicase for HIV-1 Rev-RRE export function". Cell. 119 (3): 381–392. doi:10.1016/j.cell.2004.09.029. PMID 15507209.
- Dayton AI (2006). "Within you, without you: HIV-1 Rev and RNA export". Retrovirology. 1: 35. doi:10.1186/1742-4690-1-35. PMC 526764. PMID 15516266.
- Krishnan V, Zeichner SL (2006). "Alterations in the expression of DEAD-box and other RNA binding proteins during HIV-1 replication". Retrovirology. 1: 42. doi:10.1186/1742-4690-1-42. PMC 543576. PMID 15588285.
- Rush J, Moritz A, Lee KA, et al. (2005). "Immunoaffinity profiling of tyrosine phosphorylation in cancer cells". Nat. Biotechnol. 23 (1): 94–101. doi:10.1038/nbt1046. PMID 15592455.
- Tao WA, Wollscheid B, O'Brien R, et al. (2005). "Quantitative phosphoproteome analysis using a dendrimer conjugation chemistry and tandem mass spectrometry". Nat. Methods. 2 (8): 591–598. doi:10.1038/nmeth776. PMID 16094384.
- Gevaert K, Staes A, Van Damme J, et al. (2006). "Global phosphoproteome analysis on human HepG2 hepatocytes using reversed-phase diagonal LC". Proteomics. 5 (14): 3589–3599. doi:10.1002/pmic.200401217. PMID 16097034.
- Rual JF, Venkatesan K, Hao T, et al. (2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–1178. doi:10.1038/nature04209. PMID 16189514.
- Chang PC, Chi CW, Chau GY, et al. (2006). "DDX3, a DEAD box RNA helicase, is deregulated in hepatitis virus-associated hepatocellular carcinoma and is involved in cell growth control". Oncogene. 25 (14): 1991–2003. doi:10.1038/sj.onc.1209239. PMID 16301996.