ELP3: Difference between revisions
m (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}})) |
m (Bot: HTTP→HTTPS) |
||
Line 1: | Line 1: | ||
{{Underlinked|date=May 2016}} | |||
{{ | {{Infobox_gene}} | ||
| | '''Elongator complex protein 3''', also named KAT9, is a [[protein]] that in humans is encoded by the ''ELP3'' [[gene]].<ref name="pmid11714725">{{cite journal | vauthors = Hawkes NA, Otero G, Winkler GS, Marshall N, Dahmus ME, Krappmann D, Scheidereit C, Thomas CL, Schiavo G, Erdjument-Bromage H, Tempst P, Svejstrup JQ | title = Purification and characterization of the human elongator complex | journal = J Biol Chem | volume = 277 | issue = 4 | pages = 3047–52 |date=Jan 2002 | pmid = 11714725 | pmc = | doi = 10.1074/jbc.M110445200 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: ELP3 elongation protein 3 homolog (S. cerevisiae)| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=55140| accessdate = }}</ref> ELP3 is the catalytic [[histone acetyltransferase]] subunit of the [[RNA polymerase]] II elongator complex, which is a component of the [[RNA polymerase]] II (Pol II) [[holoenzyme]] and is involved in transcriptional elongation. ELP3 supports the migration and branching of projection neurons through acetylation of alpha-tubulin in the developing [[cerebral cortex]].<ref>{{cite journal | vauthors = Creppe C, Malinouskaya L, Volvert ML, Gillard M, Close P, Malaise O, Laguesse S, Cornez I, Rahmouni S, Ormenese S, Belachew S, Malgrange B, Chapelle JP, Siebenlist U, Moonen G, Chariot A, Nguyen L | title = Elongator controls the migration and differentiation of cortical neurons through acetylation of alpha-tubulin | journal = Cell | volume = 136 | issue = 3 | pages = 551–64 | date = Feb 2009 | pmid = 19185337 | doi = 10.1016/j.cell.2008.11.043 | access-date = }}</ref> In mammals, ELP3 is important for paternal [[DNA demethylation]] after fertilization.<ref>{{cite journal | vauthors = Okada Y, Yamagata K, Hong K, Wakayama T, Zhang Y | title = A role for the elongator complex in zygotic paternal genome demethylation | journal = Nature | volume = 463 | issue = 7280 | pages = 554–8 | date = Jan 2010 | pmid = 20054296 | doi = 10.1038/nature08732 | pmc=2834414}}</ref> ELP3 is potentially involved in cellular redox homeostasis by mediating the acetylation of [[glucose-6-phosphate dehydrogenase]].<ref>{{cite journal | vauthors = Wang YP, Zhou LS, Zhao YZ, Wang SW, Chen LL, Liu LX, Ling ZQ, Hu FJ, Sun YP, Zhang JY, Yang C, Yang Y, Xiong Y, Guan KL, Ye D | title = Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress | journal = The EMBO Journal | volume = 33 | issue = 12 | pages = 1304–20 | date = Jun 2014 | pmid = 24769394 | doi = 10.1002/embj.201387224 | pmc=4194121}}</ref> Besides, ELP3 may play a role in [[chromatin remodeling]] and is involved in acetylation of [[Histone H3|histones H3]] and probably H4. | ||
}} | |||
{{ | |||
| | |||
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --> | <!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --> | ||
{{PBB_Summary | {{PBB_Summary | ||
Line 55: | Line 9: | ||
==References== | ==References== | ||
{{reflist | {{reflist}} | ||
==Further reading== | ==Further reading== | ||
{{refbegin | 2}} | {{refbegin | 2}} | ||
{{PBB_Further_reading | {{PBB_Further_reading | ||
| citations = | | citations = | ||
*{{cite journal | | *{{cite journal | vauthors=Rengo F, Brevetti G, Piscione F |title=[Behavior of some metabolic parameters during post-ischemic and post-contraction vasodilation in normal subjects] |journal=Bollettino della Società italiana di cardiologia |volume=20 |issue= 12 |pages= 1801–6 |year= 1977 |pmid= 10936 |doi= |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. |journal=Gene |volume=138 |issue= 1–2 |pages= 171–4 |year= 1994 |pmid= 8125298 |doi=10.1016/0378-1119(94)90802-8 }} | ||
*{{cite journal | | *{{cite journal | vauthors=Ninomiya Y, Okada M, Kotomura N |title=Genomic organization and isoforms of the mouse ELP gene. |journal=J. Biochem. |volume=118 |issue= 2 |pages= 380–9 |year= 1996 |pmid= 8543574 |doi= |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K |title=Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library. |journal=Gene |volume=200 |issue= 1–2 |pages= 149–56 |year= 1997 |pmid= 9373149 |doi=10.1016/S0378-1119(97)00411-3 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Hartley JL, Temple GF, Brasch MA |title=DNA cloning using in vitro site-specific recombination. |journal=Genome Res. |volume=10 |issue= 11 |pages= 1788–95 |year= 2001 |pmid= 11076863 |doi=10.1101/gr.143000 | pmc=310948 }} | ||
*{{cite journal | | *{{cite journal | vauthors=Wiemann S, Weil B, Wellenreuther R |title=Toward a catalog of human genes and proteins: sequencing and analysis of 500 novel complete protein coding human cDNAs. |journal=Genome Res. |volume=11 |issue= 3 |pages= 422–35 |year= 2001 |pmid= 11230166 |doi= 10.1101/gr.GR1547R | pmc=311072 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Simpson JC, Wellenreuther R, Poustka A |title=Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing. |journal=EMBO Rep. |volume=1 |issue= 3 |pages= 287–92 |year= 2001 |pmid= 11256614 |doi= 10.1093/embo-reports/kvd058 | pmc=1083732 |display-authors=etal}} | ||
*{{cite journal | vauthors=Kim JH, Lane WS, Reinberg D |title=Human Elongator facilitates RNA polymerase II transcription through chromatin. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 3 |pages= 1241–6 |year= 2002 |pmid= 11818576 |doi= 10.1073/pnas.251672198 | pmc=122174 }} | |||
*{{cite journal | | *{{cite journal | vauthors=Strausberg RL, Feingold EA, Grouse LH |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Ota T, Suzuki Y, Nishikawa T |title=Complete sequencing and characterization of 21,243 full-length human cDNAs. |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40–5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Bouwmeester T, Bauch A, Ruffner H |title=A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. |journal=Nat. Cell Biol. |volume=6 |issue= 2 |pages= 97–105 |year= 2004 |pmid= 14743216 |doi= 10.1038/ncb1086 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Wiemann S, Arlt D, Huber W |title=From ORFeome to biology: a functional genomics pipeline. |journal=Genome Res. |volume=14 |issue= 10B |pages= 2136–44 |year= 2004 |pmid= 15489336 |doi= 10.1101/gr.2576704 | pmc=528930 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Kouskouti A, Talianidis I |title=Histone modifications defining active genes persist after transcriptional and mitotic inactivation. |journal=EMBO J. |volume=24 |issue= 2 |pages= 347–57 |year= 2005 |pmid= 15616580 |doi= 10.1038/sj.emboj.7600516 | pmc=545808 }} | ||
*{{cite journal | | *{{cite journal | vauthors=Barrios-Rodiles M, Brown KR, Ozdamar B |title=High-throughput mapping of a dynamic signaling network in mammalian cells. |journal=Science |volume=307 |issue= 5715 |pages= 1621–5 |year= 2005 |pmid= 15761153 |doi= 10.1126/science.1105776 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Mehrle A, Rosenfelder H, Schupp I |title=The LIFEdb database in 2006. |journal=Nucleic Acids Res. |volume=34 |issue= Database issue |pages= D415–8 |year= 2006 |pmid= 16381901 |doi= 10.1093/nar/gkj139 | pmc=1347501 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Han Q, Hou X, Su D |title=hELP3 subunit of the Elongator complex regulates the transcription of HSP70 gene in human cells. |journal=Acta Biochim. Biophys. Sin. (Shanghai) |volume=39 |issue= 6 |pages= 453–61 |year= 2007 |pmid= 17558451 |doi=10.1111/j.1745-7270.2007.00293.x |display-authors=etal}} | ||
*{{cite journal | | |||
}} | }} | ||
{{refend}} | {{refend}} | ||
{{ | <!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --> | ||
{{ | {{PBB_Controls | ||
| update_page = yes | |||
| require_manual_inspection = no | |||
| update_protein_box = yes | |||
| update_summary = yes | |||
| update_citations = yes | |||
}} | |||
{{gene-8-stub}} |
Revision as of 00:28, 31 August 2017
This article needs more links to other articles to help integrate it into the encyclopedia. (May 2016) (Learn how and when to remove this template message) |
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
Elongator complex protein 3, also named KAT9, is a protein that in humans is encoded by the ELP3 gene.[1][2] ELP3 is the catalytic histone acetyltransferase subunit of the RNA polymerase II elongator complex, which is a component of the RNA polymerase II (Pol II) holoenzyme and is involved in transcriptional elongation. ELP3 supports the migration and branching of projection neurons through acetylation of alpha-tubulin in the developing cerebral cortex.[3] In mammals, ELP3 is important for paternal DNA demethylation after fertilization.[4] ELP3 is potentially involved in cellular redox homeostasis by mediating the acetylation of glucose-6-phosphate dehydrogenase.[5] Besides, ELP3 may play a role in chromatin remodeling and is involved in acetylation of histones H3 and probably H4.
References
- ↑ Hawkes NA, Otero G, Winkler GS, Marshall N, Dahmus ME, Krappmann D, Scheidereit C, Thomas CL, Schiavo G, Erdjument-Bromage H, Tempst P, Svejstrup JQ (Jan 2002). "Purification and characterization of the human elongator complex". J Biol Chem. 277 (4): 3047–52. doi:10.1074/jbc.M110445200. PMID 11714725.
- ↑ "Entrez Gene: ELP3 elongation protein 3 homolog (S. cerevisiae)".
- ↑ Creppe C, Malinouskaya L, Volvert ML, Gillard M, Close P, Malaise O, Laguesse S, Cornez I, Rahmouni S, Ormenese S, Belachew S, Malgrange B, Chapelle JP, Siebenlist U, Moonen G, Chariot A, Nguyen L (Feb 2009). "Elongator controls the migration and differentiation of cortical neurons through acetylation of alpha-tubulin". Cell. 136 (3): 551–64. doi:10.1016/j.cell.2008.11.043. PMID 19185337.
- ↑ Okada Y, Yamagata K, Hong K, Wakayama T, Zhang Y (Jan 2010). "A role for the elongator complex in zygotic paternal genome demethylation". Nature. 463 (7280): 554–8. doi:10.1038/nature08732. PMC 2834414. PMID 20054296.
- ↑ Wang YP, Zhou LS, Zhao YZ, Wang SW, Chen LL, Liu LX, Ling ZQ, Hu FJ, Sun YP, Zhang JY, Yang C, Yang Y, Xiong Y, Guan KL, Ye D (Jun 2014). "Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress". The EMBO Journal. 33 (12): 1304–20. doi:10.1002/embj.201387224. PMC 4194121. PMID 24769394.
Further reading
- Rengo F, Brevetti G, Piscione F, et al. (1977). "[Behavior of some metabolic parameters during post-ischemic and post-contraction vasodilation in normal subjects]". Bollettino della Società italiana di cardiologia. 20 (12): 1801–6. PMID 10936.
- Maruyama K, Sugano S (1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene. 138 (1–2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID 8125298.
- Ninomiya Y, Okada M, Kotomura N, et al. (1996). "Genomic organization and isoforms of the mouse ELP gene". J. Biochem. 118 (2): 380–9. PMID 8543574.
- Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, et al. (1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library". Gene. 200 (1–2): 149–56. doi:10.1016/S0378-1119(97)00411-3. PMID 9373149.
- Hartley JL, Temple GF, Brasch MA (2001). "DNA cloning using in vitro site-specific recombination". Genome Res. 10 (11): 1788–95. doi:10.1101/gr.143000. PMC 310948. PMID 11076863.
- Wiemann S, Weil B, Wellenreuther R, et al. (2001). "Toward a catalog of human genes and proteins: sequencing and analysis of 500 novel complete protein coding human cDNAs". Genome Res. 11 (3): 422–35. doi:10.1101/gr.GR1547R. PMC 311072. PMID 11230166.
- Simpson JC, Wellenreuther R, Poustka A, et al. (2001). "Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing". EMBO Rep. 1 (3): 287–92. doi:10.1093/embo-reports/kvd058. PMC 1083732. PMID 11256614.
- Kim JH, Lane WS, Reinberg D (2002). "Human Elongator facilitates RNA polymerase II transcription through chromatin". Proc. Natl. Acad. Sci. U.S.A. 99 (3): 1241–6. doi:10.1073/pnas.251672198. PMC 122174. PMID 11818576.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs". Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID 14702039.
- Bouwmeester T, Bauch A, Ruffner H, et al. (2004). "A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway". Nat. Cell Biol. 6 (2): 97–105. doi:10.1038/ncb1086. PMID 14743216.
- Wiemann S, Arlt D, Huber W, et al. (2004). "From ORFeome to biology: a functional genomics pipeline". Genome Res. 14 (10B): 2136–44. doi:10.1101/gr.2576704. PMC 528930. PMID 15489336.
- Kouskouti A, Talianidis I (2005). "Histone modifications defining active genes persist after transcriptional and mitotic inactivation". EMBO J. 24 (2): 347–57. doi:10.1038/sj.emboj.7600516. PMC 545808. PMID 15616580.
- Barrios-Rodiles M, Brown KR, Ozdamar B, et al. (2005). "High-throughput mapping of a dynamic signaling network in mammalian cells". Science. 307 (5715): 1621–5. doi:10.1126/science.1105776. PMID 15761153.
- Mehrle A, Rosenfelder H, Schupp I, et al. (2006). "The LIFEdb database in 2006". Nucleic Acids Res. 34 (Database issue): D415–8. doi:10.1093/nar/gkj139. PMC 1347501. PMID 16381901.
- Han Q, Hou X, Su D, et al. (2007). "hELP3 subunit of the Elongator complex regulates the transcription of HSP70 gene in human cells". Acta Biochim. Biophys. Sin. (Shanghai). 39 (6): 453–61. doi:10.1111/j.1745-7270.2007.00293.x. PMID 17558451.
This article on a gene on human chromosome 8 is a stub. You can help Wikipedia by expanding it. |
- Pages with broken file links
- Articles with too few wikilinks from May 2016
- Articles with invalid date parameter in template
- All articles with too few wikilinks
- Articles covered by WikiProject Wikify from May 2016
- All articles covered by WikiProject Wikify
- Genes on human chromosome
- All stub articles
- Human chromosome 8 gene stubs