HBB: Difference between revisions

Jump to navigation Jump to search
WikiBot (talk | contribs)
m Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}})
 
Line 1: Line 1:
{{redirect|HBB}}
{{Other uses}}
{{Infobox_gene}}
[[File:HBB location.png|thumb|In human, the HBB gene is located on [[Chromosome 11 (human)|chromosome 11]] at position p15.5.]]
'''Beta globin''' (also referred to as '''HBB''', '''β-globin''', '''haemoglobin beta''', '''hemoglobin beta''', or preferably '''haemoglobin subunit beta''') is a [[globin]] [[protein]], which along with alpha globin ([[HBA1|HBA]]), makes up the most common form of [[haemoglobin]] in adult humans, the [[hemoglobin A|HbA]].<ref name = "entrez">{{cite web | title = Entrez Gene: HBB hemoglobin, beta| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3043| accessdate = }}</ref> It is 146 amino acids long and has a molecular weight of 15,867 [[dalton (unit)|Da]]. Normal adult human HbA is a [[tetrameric protein|heterotetramer]] consisting of two alpha chains and two beta chains.


<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
HBB is encoded by the ''HBB'' gene on [[Chromosome 11 (human)|human chromosome 11]]. Mutations in the gene produce several variants of the proteins which are implicated with genetic disorders such as [[sickle-cell disease]] and [[beta thalassemia]], as well as beneficial traits such as [[genetic resistance to malaria]].<ref name="sabeti">{{cite journal|last1=Sabeti|first1=Pardis C|title=Natural selection: uncovering mechanisms of evolutionary adaptation to infectious disease|journal=Nature Education|year=2008|volume=1|issue=1|page=13|url=http://www.nature.com/scitable/topicpage/natural-selection-uncovering-mechanisms-of-evolutionary-adaptation-34539}}</ref><ref name="kwiat">{{cite journal | vauthors= Kwiatkowski DP | title = How malaria has affected the human genome and what human genetics can teach us about malaria | journal = The American Journal of Human Genetics | volume = 77 | issue = 2 | pages = 171–192 | year = 2005 | pmid = 16001361 | pmc = 1224522 | doi = 10.1086/432519 }}</ref>
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = no
| update_citations = yes
}}


<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
== Gene locus ==
{{GNF_Protein_box
| image = PBB_Protein_HBB_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 1a00.
| PDB = {{PDB2|1a00}}, {{PDB2|1a01}}, {{PDB2|1a0u}}, {{PDB2|1a0z}}, {{PDB2|1a3n}}, {{PDB2|1a3o}}, {{PDB2|1abw}}, {{PDB2|1aby}}, {{PDB2|1aj9}}, {{PDB2|1b86}}, {{PDB2|1bab}}, {{PDB2|1bbb}}, {{PDB2|1bij}}, {{PDB2|1buw}}, {{PDB2|1bz0}}, {{PDB2|1bz1}}, {{PDB2|1bzz}}, {{PDB2|1c7b}}, {{PDB2|1c7c}}, {{PDB2|1c7d}}, {{PDB2|1cbl}}, {{PDB2|1cbm}}, {{PDB2|1cls}}, {{PDB2|1cmy}}, {{PDB2|1coh}}, {{PDB2|1dke}}, {{PDB2|1dxt}}, {{PDB2|1dxu}}, {{PDB2|1dxv}}, {{PDB2|1fn3}}, {{PDB2|1g9v}}, {{PDB2|1gbu}}, {{PDB2|1gbv}}, {{PDB2|1gli}}, {{PDB2|1gzx}}, {{PDB2|1hab}}, {{PDB2|1hac}}, {{PDB2|1hba}}, {{PDB2|1hbb}}, {{PDB2|1hbs}}, {{PDB2|1hco}}, {{PDB2|1hdb}}, {{PDB2|1hga}}, {{PDB2|1hgb}}, {{PDB2|1hgc}}, {{PDB2|1hho}}, {{PDB2|1ird}}, {{PDB2|1j3y}}, {{PDB2|1j3z}}, {{PDB2|1j40}}, {{PDB2|1j41}}, {{PDB2|1j7s}}, {{PDB2|1j7w}}, {{PDB2|1j7y}}, {{PDB2|1jy7}}, {{PDB2|1k0y}}, {{PDB2|1k1k}}, {{PDB2|1kd2}}, {{PDB2|1lfl}}, {{PDB2|1lfq}}, {{PDB2|1lft}}, {{PDB2|1lfv}}, {{PDB2|1lfy}}, {{PDB2|1lfz}}, {{PDB2|1ljw}}, {{PDB2|1m9p}}, {{PDB2|1mko}}, {{PDB2|1nej}}, {{PDB2|1nih}}, {{PDB2|1nqp}}, {{PDB2|1o1i}}, {{PDB2|1o1j}}, {{PDB2|1o1k}}, {{PDB2|1o1l}}, {{PDB2|1o1m}}, {{PDB2|1o1n}}, {{PDB2|1o1o}}, {{PDB2|1o1p}}, {{PDB2|1qi8}}, {{PDB2|1qsh}}, {{PDB2|1qsi}}, {{PDB2|1qxd}}, {{PDB2|1qxe}}, {{PDB2|1r1x}}, {{PDB2|1r1y}}, {{PDB2|1rps}}, {{PDB2|1rq3}}, {{PDB2|1rq4}}, {{PDB2|1rqa}}, {{PDB2|1rvw}}, {{PDB2|1sdk}}, {{PDB2|1sdl}}, {{PDB2|1shr}}, {{PDB2|1si4}}, {{PDB2|1thb}}, {{PDB2|1uiw}}, {{PDB2|1vwt}}, {{PDB2|1xxt}}, {{PDB2|1xy0}}, {{PDB2|1xye}}, {{PDB2|1xz2}}, {{PDB2|1xz4}}, {{PDB2|1xz5}}, {{PDB2|1xz7}}, {{PDB2|1xzu}}, {{PDB2|1xzv}}, {{PDB2|1y09}}, {{PDB2|1y0a}}, {{PDB2|1y0c}}, {{PDB2|1y0d}}, {{PDB2|1y0t}}, {{PDB2|1y0w}}, {{PDB2|1y22}}, {{PDB2|1y2z}}, {{PDB2|1y31}}, {{PDB2|1y35}}, {{PDB2|1y45}}, {{PDB2|1y46}}, {{PDB2|1y4b}}, {{PDB2|1y4f}}, {{PDB2|1y4g}}, {{PDB2|1y4p}}, {{PDB2|1y4q}}, {{PDB2|1y4r}}, {{PDB2|1y4v}}, {{PDB2|1y5f}}, {{PDB2|1y5j}}, {{PDB2|1y5k}}, {{PDB2|1y7c}}, {{PDB2|1y7d}}, {{PDB2|1y7g}}, {{PDB2|1y7z}}, {{PDB2|1y83}}, {{PDB2|1y85}}, {{PDB2|1y8w}}, {{PDB2|1ydz}}, {{PDB2|1ye0}}, {{PDB2|1ye1}}, {{PDB2|1ye2}}, {{PDB2|1yen}}, {{PDB2|1yeo}}, {{PDB2|1yeq}}, {{PDB2|1yeu}}, {{PDB2|1yev}}, {{PDB2|1yff}}, {{PDB2|1yg5}}, {{PDB2|1ygd}}, {{PDB2|1ygf}}, {{PDB2|1yh9}}, {{PDB2|1yhe}}, {{PDB2|1yhr}}, {{PDB2|1yie}}, {{PDB2|1yih}}, {{PDB2|1yvq}}, {{PDB2|1yvt}}, {{PDB2|1yzi}}, {{PDB2|2d5z}}, {{PDB2|2d60}}, {{PDB2|2dn1}}, {{PDB2|2dn2}}, {{PDB2|2dn3}}, {{PDB2|2h35}}, {{PDB2|2hbc}}, {{PDB2|2hbd}}, {{PDB2|2hbe}}, {{PDB2|2hbf}}, {{PDB2|2hbs}}, {{PDB2|2hco}}, {{PDB2|2hhb}}, {{PDB2|2hhd}}, {{PDB2|2hhe}}, {{PDB2|3hhb}}, {{PDB2|4hhb}}, {{PDB2|6hbw}}
| Name = Hemoglobin, beta
| HGNCid = 4827
| Symbol = HBB
| AltSymbols =; CD113t-C; HBD
| OMIM = 141900
| ECnumber = 
| Homologene = 68066
| MGIid = 96022
<!-- The Following entry is a time stamp of the last bot update.  It is typically hidden data -->
| DateOfBotUpdate = 07:26, 9 October 2007 (UTC)
| Function = {{GNF_GO|id=GO:0005344 |text = oxygen transporter activity}} {{GNF_GO|id=GO:0005506 |text = iron ion binding}} {{GNF_GO|id=GO:0008430 |text = selenium binding}} {{GNF_GO|id=GO:0019825 |text = oxygen binding}} {{GNF_GO|id=GO:0020037 |text = heme binding}} {{GNF_GO|id=GO:0030492 |text = hemoglobin binding}} {{GNF_GO|id=GO:0046872 |text = metal ion binding}}
| Component = {{GNF_GO|id=GO:0005833 |text = hemoglobin complex}}
| Process = {{GNF_GO|id=GO:0006810 |text = transport}} {{GNF_GO|id=GO:0008150 |text = biological_process}} {{GNF_GO|id=GO:0015671 |text = oxygen transport}} {{GNF_GO|id=GO:0030185 |text = nitric oxide transport}} {{GNF_GO|id=GO:0045429 |text = positive regulation of nitric oxide biosynthetic process}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 3043
    | Hs_Ensembl = 
    | Hs_RefseqProtein = NP_000509
    | Hs_RefseqmRNA = NM_000518
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = 
    | Hs_GenLoc_start = 
    | Hs_GenLoc_end = 
    | Hs_Uniprot = 
    | Mm_EntrezGene = 15130
    | Mm_Ensembl = 
    | Mm_RefseqmRNA = NM_016956
    | Mm_RefseqProtein = NP_058652
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 
    | Mm_GenLoc_start = 
    | Mm_GenLoc_end = 
    | Mm_Uniprot = 
  }}
}}


Beta globin ('''HBB''', β-globin) is a protein that, along with alpha globin ([[HBA1|HBA]]), makes up the most common form of [[hemoglobin]] in adult humans.  The gene is located in the [[Human β-globin locus|β-globin locus]]. Mutant beta globin is responsible for the sickling of red blood cells seen in [[sickle cell anemia]]. [[Gene expression|Expression]] of beta globin and the neighboring globins in the β-globin locus is controlled by single [[locus control region]] (LCR).<ref name=Levings>Levings & Bungert (2002)</ref>  
HBB protein is produced by the gene ''HBB'' which is located in the multigene locus of [[Human β-globin locus|β-globin locus]] on [[Chromosome 11 (human)|chromosome 11]], specifically on the short arm position 15.5. [[Gene expression|Expression]] of beta globin and the neighbouring globins in the β-globin locus is controlled by single [[locus control region]] (LCR), the most important regulatory element in the locus located upstream of the globin genes.<ref name="pmid11895428">{{cite journal | vauthors= Levings PP, Bungert J | title = The human beta-globin locus control region | journal = Eur. J. Biochem. | volume = 269 | issue = 6 | pages = 1589–99 | year = 2002 | pmid = 11895428 | doi = 10.1046/j.1432-1327.2002.02797.x | url =  }}</ref> The normal allelic variant is 1600 [[base pair]]s (bp) long and contains three [[exon]]s. The order of the genes in the beta-globin cluster is 5' - [[HBE1|epsilon]] – [[HBG2|gamma-G]] – [[HBG1|gamma-A]] – [[HBD|delta]] – beta - 3'.<ref name = "entrez"/>


== Interactions ==


==See also==
HBB [[Protein-protein interaction|interacts]] with [[Hemoglobin, alpha 1]] (HBA1) to form haemoglobin A, the major haemoglobin in adult humans.<ref name=pmid16169070>{{cite journal | vauthors= Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE | title = A human protein-protein interaction network: a resource for annotating the proteome | language =  | journal = Cell | volume = 122 | issue = 6 | pages = 957–968 | year = 2005 | pmid = 16169070 | doi = 10.1016/j.cell.2005.08.029 | url = | laysummary =  | laydate =  | laysource =  | format =  | id =  | accessdate =  | quote =  | bibcode =  | oclc =  }}</ref><ref name=pmid6644819>{{cite journal | vauthors= Shaanan B | title = Structure of human oxyhaemoglobin at 2.1 A resolution | language =  | journal = J. Mol. Biol. | volume = 171 | issue = 1 | pages = 31–59 | year = 1983 | pmid = 6644819 | doi = 10.1016/S0022-2836(83)80313-1 | url =  | authorlink =  | laysummary =  | oclc =  | id =  | bibcode =  | accessdate =  | location = ENGLAND | laydate =  | format =  | quote =  | publisher =  | issn = 0022-2836 | laysource =  }}</ref> The interaction is two-fold. First, one HBB and one HBA1 combine, non-covalently, to form a dimer. Secondly, two dimers combine to form the four-chain tetramer, and this becomes the functional haemolglobin.<ref>{{cite web|title=Hemoglobin Synthesis|url=http://sickle.bwh.harvard.edu/hbsynthesis.html|website=harvard.edu|publisher=Harvard University|accessdate=18 November 2014|date=2002}}</ref>
[[Human β-globin locus]]


== Associated genetic disorders ==


==References==
===  Beta thalassemia  ===
{{reflist|2}}


Total or partial absence of HBB causes a genetic disease called [[beta thalassemia]]. Total loss called, thalassemia major or beta-0-thalassemia, is due to mutation in both alleles, and this results in failure to form beta chain of haemoglobin. It prevents oxygen supply in the tissues. It is highly lethal. Symptoms, such as severe anaemia and heart attack, appear within two years after birth. They can be treated only by lifelong [[blood transfusion]] and [[bone marrow transplantation]].<ref>{{cite journal | vauthors= Muncie HL, Campbell J | title = Alpha and beta thalassemia | journal = American Family Physician | volume = 80 | issue = 4 | pages = 339–44 | year = 2009 | pmid = 19678601 }}</ref><ref>{{cite web|title=Beta thalassemia|url=http://ghr.nlm.nih.gov/condition/beta-thalassemia|work=Genetics Home Reference|publisher=U.S. National Library of Medicine|accessdate=18 November 2014|date=11 November 2014}}</ref> Reduced HBB function called thalassemia minor or beta+ thalassemia is due to mutation in one of the alleles. It is less severe but patients are prone to other diseases such as [[asthma]] and liver problems.<ref>{{cite journal | vauthors= Valenti L, Canavesi E, Galmozzi E, Dongiovanni P, Rametta R, Maggioni P, Maggioni M, Fracanzani AL, Fargion S | title = Beta-globin mutations are associated with parenchymal siderosis and fibrosis in patients with non-alcoholic fatty liver disease | journal = Journal of Hepatology | volume = 53 | issue = 5 | pages = 927–933 | year = 2010 | pmid = 20739079 | doi = 10.1016/j.jhep.2010.05.023 }}</ref>


{{genetics-stub}}
According to a recent study, the stop gain mutation '''Gln40stop''' in '''''HBB''''' gene is a common cause of [[autosomal recessive]] [[Beta thalassemia|Beta- thalassemia]] in [[Sardinian people]] (almost exclusive in Sardinia). Carriers of this mutation show an enhanced red blood cell count. As a curiosity, the same mutation was also associated to a decrease in serum [[LDL]] levels in carriers, so the authors suggest that is due to the need of [[cholesterol]] to regenerate cell membranes.<ref>{{cite journal|author=Sidore, C., y colaboradores |title=Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers |year=2015 |journal=Nature Genetics |volume=47 |pages=1272–1281 |doi=10.1038/ng.3368 |pmid=26366554 |pmc=4627508}}</ref>


[[Category:Proteins]]
=== Sickle cell disease ===
{{WikiDoc Sources}}
 
More than a thousand naturally occurring ''HBB'' variants have been discovered. The most common is HbS, which causes [[sickle cell disease]]. HbS is produced by a [[point mutation]] in ''HBB'' in which the [[codon]] GAG is replaced by GTG. This results in the replacement of hydrophilic amino acid [[glutamic acid]] with the hydrophobic amino acid [[valine]] at the sixth position (β6Glu→Val). This substitution creates a hydrophobic spot on the outside of the protein that sticks to the hydrophobic region of an adjacent haemoglobin molecule's beta chain. This further causes clumping of HbS molecules into rigid fibers, causing "sickling" of the entire [[red blood cell]]s in the [[zygosity|homozygous]] (''HbS/HbS'') condition.<ref>{{cite journal | vauthors= Thom CS, Dickson CF, Gell DA, Weiss MJ | title = Hemoglobin variants: biochemical properties and clinical correlates | journal = Cold Spring Harb Perspect Med | volume = 3 | issue = 3 | pages = a011858 | year = 2013 | pmid = 23388674 | doi = 10.1101/cshperspect.a011858 | pmc=3579210}}</ref> Homozygous allele has become one of the deadliest genetic factors.<ref>{{cite journal | vauthors= Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Barker-Collo S, Bartels DH, Bell ML, Benjamin EJ, Bennett D, Bhalla K, Bikbov B, Bin Abdulhak A, Birbeck G, Blyth F, Bolliger I, Boufous S, Bucello C, Burch M, Burney P, Carapetis J, Chen H, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, de Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, Dahodwala N, De Leo D, Degenhardt L, Delossantos A, Denenberg J, Des Jarlais DC, Dharmaratne SD, Dorsey ER, Driscoll T, Duber H, Ebel B, Erwin PJ, Espindola P, Ezzati M, Feigin V, Flaxman AD, Forouzanfar MH, Fowkes FG, Franklin R, Fransen M, Freeman MK, Gabriel SE, Gakidou E, Gaspari F, Gillum RF, Gonzalez-Medina D, Halasa YA, Haring D, Harrison JE, Havmoeller R, Hay RJ, Hoen B, Hotez PJ, Hoy D, Jacobsen KH, James SL, Jasrasaria R, Jayaraman S, Johns N, Karthikeyan G, Kassebaum N, Keren A, Khoo JP, Knowlton LM, Kobusingye O, Koranteng A, Krishnamurthi R, Lipnick M, Lipshultz SE, Ohno SL, Mabweijano J, MacIntyre MF, Mallinger L, March L, Marks GB, Marks R, Matsumori A, Matzopoulos R, Mayosi BM, McAnulty JH, McDermott MM, McGrath J, Mensah GA, Merriman TR, Michaud C, Miller M, Miller TR, Mock C, Mocumbi AO, Mokdad AA, Moran A, Mulholland K, Nair MN, Naldi L, Narayan KM, Nasseri K, Norman P, O'Donnell M, Omer SB, Ortblad K, Osborne R, Ozgediz D, Pahari B, Pandian JD, Rivero AP, Padilla RP, Perez-Ruiz F, Perico N, Phillips D, Pierce K, Pope CA, Porrini E, Pourmalek F, Raju M, Ranganathan D, Rehm JT, Rein DB, Remuzzi G, Rivara FP, Roberts T, De León FR, Rosenfeld LC, Rushton L, Sacco RL, Salomon JA, Sampson U, Sanman E, Schwebel DC, Segui-Gomez M, Shepard DS, Singh D, Singleton J, Sliwa K, Smith E, Steer A, Taylor JA, Thomas B, Tleyjeh IM, Towbin JA, Truelsen T, Undurraga EA, Venketasubramanian N, Vijayakumar L, Vos T, Wagner GR, Wang M, Wang W, Watt K, Weinstock MA, Weintraub R, Wilkinson JD, Woolf AD, Wulf S, Yeh PH, Yip P, Zabetian A, Zheng ZJ, Lopez AD, Murray CJ, AlMazroa MA, Memish ZA | title = Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010 | journal = Lancet | volume = 380 | issue = 9859 | pages = 2095–128 | year = 2012 | pmid = 23245604 | doi = 10.1016/S0140-6736(12)61728-0 }}</ref> Whereas, people heterozygous for the mutant allele (''HbS/HbA'') are resistant to [[malaria]] and develop minimal effects of the anaemia.<ref>{{cite journal | vauthors= Luzzatto L | title = Sickle cell anaemia and malaria | journal = Mediterr J Hematol Infect Dis | volume = 4 | issue = 1 | pages = e2012065 | year = 2012 | pmid = 23170194 | pmc = 3499995 | doi = 10.4084/MJHID.2012.065 | url =  }}</ref>
 
=== Haemoglobin C ===
 
Sickle cell disease is closely related to another mutant haemoglobin called [[haemoglobin C]] (HbC), because they can be inherited together.<ref>{{cite journal | vauthors= Piel FB, Howes RE, Patil AP, Nyangiri OA, Gething PW, Bhatt S, Williams TN, Weatherall DJ, Hay SI | title = The distribution of haemoglobin C and its prevalence in newborns in Africa | journal = Scientific Reports | volume = 3 | issue = 1671 | date = 2013 | pmid = 23591685 | pmc = 3628164 | doi = 10.1038/srep01671 }}</ref> HbC mutation is at the same position in HbS, but glutamic acid is replaced by [[lysine]] (β6Glu→Lys). The mutation is particularly prevalent in West African populations. HbC provides near full protection against ''[[Plasmodium falciparum]] ''in homozygous (CC) individuals and intermediate protection in heterozygous (AC) individuals.<ref>{{cite journal | vauthors= Modiano D, Luoni G, Sirima BS, Simporé J, Verra F, Konaté A, Rastrelli E, Olivieri A, Calissano C, Paganotti GM, D'Urbano L, Sanou I, Sawadogo A, Modiano G, Coluzzi M | title = Haemoglobin C protects against clinical Plasmodium falciparum malaria | journal = Nature | volume = 414 | issue = 6861 | pages = 305–308 | date = 2001 | pmid = 11713529 | doi = 10.1038/35104556 }}</ref> This indicates that HbC has stronger influence than HbS, and is predicted to replace HbS in malaria-endemic regions.<ref>{{cite journal | vauthors= Verra F, Bancone G, Avellino P, Blot I, Simporé J, Modiano D | title = Haemoglobin C and S in natural selection against Plasmodium falciparum malaria: a plethora or a single shared adaptive mechanism? | journal = Parassitologia | volume = 49 | issue = 4 | pages = 209–13 | date = 2007 | pmid = 18689228 }}</ref>
 
=== Haemoglobin E ===
 
Another point mutation in HBB, in which glutamic acid is replaced with lysine at position 26 (β26Glu→Lys), leads to the formation of [[haemoglobin E]] (HbE).<ref>{{cite journal|vauthors=Olivieri NF, Pakbaz Z, Vichinsky E|title=Hb E/beta-thalassaemia: a common & clinically diverse disorder|journal=The Indian Journal of Medical Research|date=2011|volume=134|issue=4|pages=522–531|pmid=22089616|pmc=3237252}}</ref> HbE has a very unstable α- and β-globin association. Even though the unstable protein itself has mild effect, inherited with HbS and thalassemia traits, it turns into a life-threatening form of β-thalassemia. The mutation is of relatively recent origin suggesting that it resulted from selective pressure against severe falciparum malaria, as heterozygous allele prevents the development of malaria.<ref>{{cite journal|vauthors=Chotivanich K, Udomsangpetch R, Pattanapanyasat K, Chierakul W, Simpson J, Looareesuwan S, White N|title=Hemoglobin E: a balanced polymorphism protective against high parasitemias and thus severe ''P falciparum'' malaria|journal=Blood|year=2002|volume=100|issue=4|pages=1172–1176|pmid=12149194}}</ref>
 
== Human evolution ==
 
Malaria due to ''Plasmodium falciparum'' is a major selective factor in [[human evolution]].<ref name=kwiat/><ref>{{cite journal | vauthors= Verra F, Mangano VD, Modiano D | title = Genetics of susceptibility to Plasmodium falciparum: from classical malaria resistance genes towards genome-wide association studies. | journal = Parasite Immunology | volume = 31 | issue = 5 | pages = 234–53 | year = 2009 | pmid = 19388945 | doi = 10.1111/j.1365-3024.2009.01106.x }}</ref> It has influenced mutations in ''HBB'' in various degrees resulting in the existence of numerous HBB variants. Some of these mutations are not directly lethal and instead confer resistance to malaria, particularly in Africa where malaria is epidemic.<ref>{{cite journal | vauthors= Tishkoff SA, Williams SM | title = Genetic analysis of African populations: human evolution and complex disease. | journal = Nature Reviews Genetics | volume = 3 | issue = 8 | pages = 611–21 | year = 2002 | pmid = 12154384 | doi = 10.1038/nrg865 }}</ref> People of African descent have evolved to have higher rates of the mutant HBB because the heterozygous individuals have a misshaped red blood cell that prevent attacks from malarial parasites. Thus, HBB mutants are the sources of positive selection in these regions and are important for their long-term survival.<ref name=sabeti/><ref>{{cite journal | vauthors= Excoffier L | title = Human demographic history: refining the recent African origin model | journal = Current Opinion in Genetics & Development | volume = 12 | issue = 6 | pages = 675–682 | year = 2002 | pmid = 12433581 | doi = 10.1016/S0959-437X(02)00350-7 }}</ref> Such selection markers are important for tracing human ancestry and [[Recent African origin of modern humans|diversification from Africa]].<ref>{{cite journal | vauthors= Reed FA, Tishkoff SA | title = African human diversity, origins and migrations | journal = Current Opinion in Genetics & Development | volume = 16 | issue = 6 | pages = 597–605 | year = 2006 | pmid = 17056248 | doi = 10.1016/j.gde.2006.10.008 }}</ref>
 
== See also ==
*[[Human β-globin locus]]
 
== References ==
{{reflist|35em}}
 
== Further reading ==
{{refbegin|35em}}
* {{cite journal | vauthors= Higgs DR, Vickers MA, Wilkie AO, Pretorius IM, Jarman AP, Weatherall DJ | title = A review of the molecular genetics of the human alpha-globin gene cluster. | journal = Blood | volume = 73 | issue = 5 | pages = 1081–104 | year = 1989 | pmid = 2649166 | doi =  }}
* {{cite journal | vauthors= Giardina B, Messana I, Scatena R, Castagnola M | title = The multiple functions of hemoglobin. | journal = Crit. Rev. Biochem. Mol. Biol. | volume = 30 | issue = 3 | pages = 165–96 | year = 1995 | pmid = 7555018 | doi = 10.3109/10409239509085142 }}
* {{cite journal | vauthors= Salzano AM, Carbone V, Pagano L, Buffardi S, De RC, Pucci P | title = Hb Vila Real [beta36(C2)Pro-->His] in Italy: characterization of the amino acid substitution and the DNA mutation. | journal = Hemoglobin | volume = 26 | issue = 1 | pages = 21–31 | year = 2002 | pmid = 11939509 | doi = 10.1081/HEM-120002937 }}
* {{cite journal | vauthors= Frischknecht H, Dutly F | title = A 65 bp duplication/insertion in exon II of the beta globin gene causing beta0-thalassemia. | journal = Haematologica | volume = 92 | issue = 3 | pages = 423–4 | year = 2007 | pmid = 17339197 | doi = 10.3324/haematol.10785 }}
{{refend}}
 
{{Commons category|Hemoglobin, beta-chain}}
 
{{PDB Gallery|geneid=3043}}
{{Hemeproteins}}
 
[[Category:Hemoglobins]]

Revision as of 13:28, 31 August 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human
File:HBB location.png
In human, the HBB gene is located on chromosome 11 at position p15.5.

Beta globin (also referred to as HBB, β-globin, haemoglobin beta, hemoglobin beta, or preferably haemoglobin subunit beta) is a globin protein, which along with alpha globin (HBA), makes up the most common form of haemoglobin in adult humans, the HbA.[1] It is 146 amino acids long and has a molecular weight of 15,867 Da. Normal adult human HbA is a heterotetramer consisting of two alpha chains and two beta chains.

HBB is encoded by the HBB gene on human chromosome 11. Mutations in the gene produce several variants of the proteins which are implicated with genetic disorders such as sickle-cell disease and beta thalassemia, as well as beneficial traits such as genetic resistance to malaria.[2][3]

Gene locus

HBB protein is produced by the gene HBB which is located in the multigene locus of β-globin locus on chromosome 11, specifically on the short arm position 15.5. Expression of beta globin and the neighbouring globins in the β-globin locus is controlled by single locus control region (LCR), the most important regulatory element in the locus located upstream of the globin genes.[4] The normal allelic variant is 1600 base pairs (bp) long and contains three exons. The order of the genes in the beta-globin cluster is 5' - epsilongamma-Ggamma-Adelta – beta - 3'.[1]

Interactions

HBB interacts with Hemoglobin, alpha 1 (HBA1) to form haemoglobin A, the major haemoglobin in adult humans.[5][6] The interaction is two-fold. First, one HBB and one HBA1 combine, non-covalently, to form a dimer. Secondly, two dimers combine to form the four-chain tetramer, and this becomes the functional haemolglobin.[7]

Associated genetic disorders

Beta thalassemia

Total or partial absence of HBB causes a genetic disease called beta thalassemia. Total loss called, thalassemia major or beta-0-thalassemia, is due to mutation in both alleles, and this results in failure to form beta chain of haemoglobin. It prevents oxygen supply in the tissues. It is highly lethal. Symptoms, such as severe anaemia and heart attack, appear within two years after birth. They can be treated only by lifelong blood transfusion and bone marrow transplantation.[8][9] Reduced HBB function called thalassemia minor or beta+ thalassemia is due to mutation in one of the alleles. It is less severe but patients are prone to other diseases such as asthma and liver problems.[10]

According to a recent study, the stop gain mutation Gln40stop in HBB gene is a common cause of autosomal recessive Beta- thalassemia in Sardinian people (almost exclusive in Sardinia). Carriers of this mutation show an enhanced red blood cell count. As a curiosity, the same mutation was also associated to a decrease in serum LDL levels in carriers, so the authors suggest that is due to the need of cholesterol to regenerate cell membranes.[11]

Sickle cell disease

More than a thousand naturally occurring HBB variants have been discovered. The most common is HbS, which causes sickle cell disease. HbS is produced by a point mutation in HBB in which the codon GAG is replaced by GTG. This results in the replacement of hydrophilic amino acid glutamic acid with the hydrophobic amino acid valine at the sixth position (β6Glu→Val). This substitution creates a hydrophobic spot on the outside of the protein that sticks to the hydrophobic region of an adjacent haemoglobin molecule's beta chain. This further causes clumping of HbS molecules into rigid fibers, causing "sickling" of the entire red blood cells in the homozygous (HbS/HbS) condition.[12] Homozygous allele has become one of the deadliest genetic factors.[13] Whereas, people heterozygous for the mutant allele (HbS/HbA) are resistant to malaria and develop minimal effects of the anaemia.[14]

Haemoglobin C

Sickle cell disease is closely related to another mutant haemoglobin called haemoglobin C (HbC), because they can be inherited together.[15] HbC mutation is at the same position in HbS, but glutamic acid is replaced by lysine (β6Glu→Lys). The mutation is particularly prevalent in West African populations. HbC provides near full protection against Plasmodium falciparum in homozygous (CC) individuals and intermediate protection in heterozygous (AC) individuals.[16] This indicates that HbC has stronger influence than HbS, and is predicted to replace HbS in malaria-endemic regions.[17]

Haemoglobin E

Another point mutation in HBB, in which glutamic acid is replaced with lysine at position 26 (β26Glu→Lys), leads to the formation of haemoglobin E (HbE).[18] HbE has a very unstable α- and β-globin association. Even though the unstable protein itself has mild effect, inherited with HbS and thalassemia traits, it turns into a life-threatening form of β-thalassemia. The mutation is of relatively recent origin suggesting that it resulted from selective pressure against severe falciparum malaria, as heterozygous allele prevents the development of malaria.[19]

Human evolution

Malaria due to Plasmodium falciparum is a major selective factor in human evolution.[3][20] It has influenced mutations in HBB in various degrees resulting in the existence of numerous HBB variants. Some of these mutations are not directly lethal and instead confer resistance to malaria, particularly in Africa where malaria is epidemic.[21] People of African descent have evolved to have higher rates of the mutant HBB because the heterozygous individuals have a misshaped red blood cell that prevent attacks from malarial parasites. Thus, HBB mutants are the sources of positive selection in these regions and are important for their long-term survival.[2][22] Such selection markers are important for tracing human ancestry and diversification from Africa.[23]

See also

References

  1. 1.0 1.1 "Entrez Gene: HBB hemoglobin, beta".
  2. 2.0 2.1 Sabeti, Pardis C (2008). "Natural selection: uncovering mechanisms of evolutionary adaptation to infectious disease". Nature Education. 1 (1): 13.
  3. 3.0 3.1 Kwiatkowski DP (2005). "How malaria has affected the human genome and what human genetics can teach us about malaria". The American Journal of Human Genetics. 77 (2): 171–192. doi:10.1086/432519. PMC 1224522. PMID 16001361.
  4. Levings PP, Bungert J (2002). "The human beta-globin locus control region". Eur. J. Biochem. 269 (6): 1589–99. doi:10.1046/j.1432-1327.2002.02797.x. PMID 11895428.
  5. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE (2005). "A human protein-protein interaction network: a resource for annotating the proteome". Cell. 122 (6): 957–968. doi:10.1016/j.cell.2005.08.029. PMID 16169070.
  6. Shaanan B (1983). "Structure of human oxyhaemoglobin at 2.1 A resolution". J. Mol. Biol. ENGLAND. 171 (1): 31–59. doi:10.1016/S0022-2836(83)80313-1. ISSN 0022-2836. PMID 6644819.
  7. "Hemoglobin Synthesis". harvard.edu. Harvard University. 2002. Retrieved 18 November 2014.
  8. Muncie HL, Campbell J (2009). "Alpha and beta thalassemia". American Family Physician. 80 (4): 339–44. PMID 19678601.
  9. "Beta thalassemia". Genetics Home Reference. U.S. National Library of Medicine. 11 November 2014. Retrieved 18 November 2014.
  10. Valenti L, Canavesi E, Galmozzi E, Dongiovanni P, Rametta R, Maggioni P, Maggioni M, Fracanzani AL, Fargion S (2010). "Beta-globin mutations are associated with parenchymal siderosis and fibrosis in patients with non-alcoholic fatty liver disease". Journal of Hepatology. 53 (5): 927–933. doi:10.1016/j.jhep.2010.05.023. PMID 20739079.
  11. Sidore, C., y colaboradores (2015). "Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers". Nature Genetics. 47: 1272–1281. doi:10.1038/ng.3368. PMC 4627508. PMID 26366554.
  12. Thom CS, Dickson CF, Gell DA, Weiss MJ (2013). "Hemoglobin variants: biochemical properties and clinical correlates". Cold Spring Harb Perspect Med. 3 (3): a011858. doi:10.1101/cshperspect.a011858. PMC 3579210. PMID 23388674.
  13. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Barker-Collo S, Bartels DH, Bell ML, Benjamin EJ, Bennett D, Bhalla K, Bikbov B, Bin Abdulhak A, Birbeck G, Blyth F, Bolliger I, Boufous S, Bucello C, Burch M, Burney P, Carapetis J, Chen H, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, de Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, Dahodwala N, De Leo D, Degenhardt L, Delossantos A, Denenberg J, Des Jarlais DC, Dharmaratne SD, Dorsey ER, Driscoll T, Duber H, Ebel B, Erwin PJ, Espindola P, Ezzati M, Feigin V, Flaxman AD, Forouzanfar MH, Fowkes FG, Franklin R, Fransen M, Freeman MK, Gabriel SE, Gakidou E, Gaspari F, Gillum RF, Gonzalez-Medina D, Halasa YA, Haring D, Harrison JE, Havmoeller R, Hay RJ, Hoen B, Hotez PJ, Hoy D, Jacobsen KH, James SL, Jasrasaria R, Jayaraman S, Johns N, Karthikeyan G, Kassebaum N, Keren A, Khoo JP, Knowlton LM, Kobusingye O, Koranteng A, Krishnamurthi R, Lipnick M, Lipshultz SE, Ohno SL, Mabweijano J, MacIntyre MF, Mallinger L, March L, Marks GB, Marks R, Matsumori A, Matzopoulos R, Mayosi BM, McAnulty JH, McDermott MM, McGrath J, Mensah GA, Merriman TR, Michaud C, Miller M, Miller TR, Mock C, Mocumbi AO, Mokdad AA, Moran A, Mulholland K, Nair MN, Naldi L, Narayan KM, Nasseri K, Norman P, O'Donnell M, Omer SB, Ortblad K, Osborne R, Ozgediz D, Pahari B, Pandian JD, Rivero AP, Padilla RP, Perez-Ruiz F, Perico N, Phillips D, Pierce K, Pope CA, Porrini E, Pourmalek F, Raju M, Ranganathan D, Rehm JT, Rein DB, Remuzzi G, Rivara FP, Roberts T, De León FR, Rosenfeld LC, Rushton L, Sacco RL, Salomon JA, Sampson U, Sanman E, Schwebel DC, Segui-Gomez M, Shepard DS, Singh D, Singleton J, Sliwa K, Smith E, Steer A, Taylor JA, Thomas B, Tleyjeh IM, Towbin JA, Truelsen T, Undurraga EA, Venketasubramanian N, Vijayakumar L, Vos T, Wagner GR, Wang M, Wang W, Watt K, Weinstock MA, Weintraub R, Wilkinson JD, Woolf AD, Wulf S, Yeh PH, Yip P, Zabetian A, Zheng ZJ, Lopez AD, Murray CJ, AlMazroa MA, Memish ZA (2012). "Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010". Lancet. 380 (9859): 2095–128. doi:10.1016/S0140-6736(12)61728-0. PMID 23245604.
  14. Luzzatto L (2012). "Sickle cell anaemia and malaria". Mediterr J Hematol Infect Dis. 4 (1): e2012065. doi:10.4084/MJHID.2012.065. PMC 3499995. PMID 23170194.
  15. Piel FB, Howes RE, Patil AP, Nyangiri OA, Gething PW, Bhatt S, Williams TN, Weatherall DJ, Hay SI (2013). "The distribution of haemoglobin C and its prevalence in newborns in Africa". Scientific Reports. 3 (1671). doi:10.1038/srep01671. PMC 3628164. PMID 23591685.
  16. Modiano D, Luoni G, Sirima BS, Simporé J, Verra F, Konaté A, Rastrelli E, Olivieri A, Calissano C, Paganotti GM, D'Urbano L, Sanou I, Sawadogo A, Modiano G, Coluzzi M (2001). "Haemoglobin C protects against clinical Plasmodium falciparum malaria". Nature. 414 (6861): 305–308. doi:10.1038/35104556. PMID 11713529.
  17. Verra F, Bancone G, Avellino P, Blot I, Simporé J, Modiano D (2007). "Haemoglobin C and S in natural selection against Plasmodium falciparum malaria: a plethora or a single shared adaptive mechanism?". Parassitologia. 49 (4): 209–13. PMID 18689228.
  18. Olivieri NF, Pakbaz Z, Vichinsky E (2011). "Hb E/beta-thalassaemia: a common & clinically diverse disorder". The Indian Journal of Medical Research. 134 (4): 522–531. PMC 3237252. PMID 22089616.
  19. Chotivanich K, Udomsangpetch R, Pattanapanyasat K, Chierakul W, Simpson J, Looareesuwan S, White N (2002). "Hemoglobin E: a balanced polymorphism protective against high parasitemias and thus severe P falciparum malaria". Blood. 100 (4): 1172–1176. PMID 12149194.
  20. Verra F, Mangano VD, Modiano D (2009). "Genetics of susceptibility to Plasmodium falciparum: from classical malaria resistance genes towards genome-wide association studies". Parasite Immunology. 31 (5): 234–53. doi:10.1111/j.1365-3024.2009.01106.x. PMID 19388945.
  21. Tishkoff SA, Williams SM (2002). "Genetic analysis of African populations: human evolution and complex disease". Nature Reviews Genetics. 3 (8): 611–21. doi:10.1038/nrg865. PMID 12154384.
  22. Excoffier L (2002). "Human demographic history: refining the recent African origin model". Current Opinion in Genetics & Development. 12 (6): 675–682. doi:10.1016/S0959-437X(02)00350-7. PMID 12433581.
  23. Reed FA, Tishkoff SA (2006). "African human diversity, origins and migrations". Current Opinion in Genetics & Development. 16 (6): 597–605. doi:10.1016/j.gde.2006.10.008. PMID 17056248.

Further reading

  • Higgs DR, Vickers MA, Wilkie AO, Pretorius IM, Jarman AP, Weatherall DJ (1989). "A review of the molecular genetics of the human alpha-globin gene cluster". Blood. 73 (5): 1081–104. PMID 2649166.
  • Giardina B, Messana I, Scatena R, Castagnola M (1995). "The multiple functions of hemoglobin". Crit. Rev. Biochem. Mol. Biol. 30 (3): 165–96. doi:10.3109/10409239509085142. PMID 7555018.
  • Salzano AM, Carbone V, Pagano L, Buffardi S, De RC, Pucci P (2002). "Hb Vila Real [beta36(C2)Pro-->His] in Italy: characterization of the amino acid substitution and the DNA mutation". Hemoglobin. 26 (1): 21–31. doi:10.1081/HEM-120002937. PMID 11939509.
  • Frischknecht H, Dutly F (2007). "A 65 bp duplication/insertion in exon II of the beta globin gene causing beta0-thalassemia". Haematologica. 92 (3): 423–4. doi:10.3324/haematol.10785. PMID 17339197.