Microcephalin: Difference between revisions

Jump to navigation Jump to search
m (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}))
 
Line 1: Line 1:
{{protein
{{infobox protein
| Name = microcephaly, primary autosomal recessive 1
| Name = microcephaly,<br />primary autosomal recessive 1
| caption =  
| caption = [[X-ray crystallography#Biological macromolecular crystallography|Crystallographic structure]] of the [[N-terminus|N-terminal]] [[BRCT domain]] of human microcephalin (MCPH1)<ref name="Singh_2010">{{PDB|3KTF}}; {{cite web |vauthors=Singh N, Heroux A, Thompson JR, Mer G |title=Structure of the N-terminal BRCT domain of human microcephalin (MCPH1) | publisher = [[Protein Data Bank]] | url = http://www.rcsb.org/pdb/explore/pubmed.do?structureId=3PA6 | year = 2010 | doi = 10.2210/pdb3ktf/pdb}}</ref>
| image =  
| image =Microcephalin.png
| width =  
| width =  
| HGNCid = 6954
| HGNCid = 6954
| Symbol = MCPH1
| Symbol = MCPH1
| AltSymbols = Microcephalin<ref name="microcephalin">
| AltSymbols = Microcephalin,<ref name = "microcephalin"/> BRIT1<ref name = "AutoR3-1"/>
{{cite journal
| author = Jackson, A.P., ''et al.'' |
| year = 2002
| title = Identification of Microcephalin, a Protein Implicated in Determining the Size of the Human Brain
| journal = [[Am. J. Hum. Genet.]]
| volume = 71
| pages = 136-142
| pmid = 12046007}}
</ref>, BRIT1<ref>
{{cite journal
| author = Lin, S.Y. & Elledge, S.J.
| year = 2003
| title = Multiple tumor suppressor pathways negatively regulate telomerase
| journal = [[Cell]]
| volume = 113
| pages = 881-889
| pmid = 12837246}}
</ref>
| EntrezGene = 79648
| EntrezGene = 79648
| OMIM = 607117
| OMIM = 607117
Line 36: Line 18:
| LocusSupplementaryData =  
| LocusSupplementaryData =  
}}
}}
{{protein
{{Infobox protein family
| Name = microcephaly, primary autosomal recessive 2
| Symbol = Microcephalin
| caption =  
| Name = Microcephalin protein
| image =  
| image =  
| width =  
| width =  
| HGNCid = 6955
| Symbol = MCPH2
| AltSymbols =
| EntrezGene = 4181
| OMIM = 604317
| RefSeq =
| UniProt =
| PDB =
| ECnumber =
| Chromosome = 19
| Arm = q
| Band = 13.1-13.2
| LocusSupplementaryData =
}}
{{protein
| Name = microcephaly, primary autosomal recessive 3
| caption =  
| caption =  
| image =  
| Pfam = PF12258
| width =  
| Pfam_clan =  
| HGNCid = 6956
| InterPro = IPR022047
| Symbol = CDK5RAP2
| SMART =  
| AltSymbols = MCPH3
| PROSITE =  
| EntrezGene = 23702
| MEROPS =
| OMIM = 604804
| SCOP =  
| RefSeq =  
| TCDB =  
| UniProt =
| OPM family =  
| PDB =
| OPM protein =  
| ECnumber =
| CAZy =  
| Chromosome = 9
| PDB =  
| Arm = q
| Band = 33.3
| LocusSupplementaryData =  
}}
}}
{{protein
'''Microcephalin''' ('''MCPH1''') is a [[gene]] that is expressed during fetal brain development. Certain [[mutation]]s in MCPH1, when [[homozygous]], cause primary [[microcephaly]]—a severely diminished [[Human brain|brain]].<ref name = "microcephalin"/><ref>{{OMIM|251200}}</ref><ref name = "AutoR3-2"/> Hence it has been assumed that variants have a role in brain development,<ref name = "AutoR3-3"/><ref name = "AutoR3-4"/> but in normal individuals no effect on [[mind|mental]] ability or [[behavior]] has yet been demonstrated in either this or another similarly studied microcephaly gene, ''[[ASPM (gene)|ASPM]]''.<ref name = "AutoR3-5"/><ref name = "AutoR3-6"/> However, an association has been established between normal variation in brain structure as measured with MRI (i.e., primarily ''cortical surface area'' and total brain volume) and common genetic variants within both the MCPH1 gene and another similarly studied microcephaly gene, CDK5RAP2.<ref name="Rimol_2010">{{cite journal |bibcode=2010PNAS..107..384R |jstor=40536283 |title=Sex-dependent association of common variants of microcephaly genes with brain structure |last1=Rimol |first1=Lars M. |last2=Agartz |first2=Ingrid |last3=Djurovic |first3=Srdjan |last4=Brown |first4=Andrew A. |last5=Roddey |first5=J. Cooper |last6=Kahler |first6=Anna K. |last7=Mattingsdal |first7=Morten |last8=Athanasiu |first8=Lavinia |last9=Joyner |first9=Alexander H. |last10=Schork |first10=N. J. |last11=Halgren |first11=E. |last12=Sundet |first12=K. |last13=Melle |first13=I. |last14=Dale |first14=A. M. |last15=Andreassen |first15=O. A. |last16=Weiner |first16=M. |last17=Thal |first17=L. |last18=Petersen |first18=R. |last19=Jack |first19=C. R. |last20=Jagust |first20=W. |last21=Trojanowki |first21=J. |last22=Toga |first22=A. W. |last23=Beckett |first23=L. |last24=Green |first24=R. C. |last25=Gamst |first25=A. |last26=Potter |first26=W. Z. |last27=Montine |first27=T. |last28=Anders |first28=D. |last29=Bernstein |first29=M. |last30=Felmlee |first30=J. |volume=107 |year=2010 |pages=384–8 |journal=Proceedings of the National Academy of Sciences |doi=10.1073/pnas.0908454107 |pmid=20080800 |issue=1 |pmc=2806758|display-authors=8 }}</ref>
| Name = microcephaly, primary autosomal recessive 4
 
| caption =
==Structure==
| image =
Microcephalin proteins contain the following three domains:
| width =
* [[N-terminus|N-terminal]] [[BRCT domain]]
| HGNCid = 6957
* Central microcephalin protein domain ({{InterPro|IPR022047}})
| Symbol = MCPH4
* [[C-terminus|C-terminal]] BRCT domain
| AltSymbols =
| EntrezGene = 23701
| OMIM = 604321
| RefSeq =
| UniProt =
| PDB =
| ECnumber =
| Chromosome = 15
| Arm = q
| Band = 15-21
| LocusSupplementaryData =
}}
{{protein
| Name = microcephaly, primary autosomal recessive 5
| caption =
| image =
| width =
| HGNCid = 6958
| Symbol = ASPM
| AltSymbols = MCPH5
| EntrezGene = 64590
| OMIM = 608716
| RefSeq =
| UniProt =
| PDB =
| ECnumber =
| Chromosome = 1
| Arm = q
| Band = 31
| LocusSupplementaryData =
}}
{{protein
| Name = microcephaly, primary autosomal recessive 6
| caption =
| image =
| width =
| HGNCid = 17120
| Symbol = CENPJ
| AltSymbols = MCPH6
| EntrezGene = 170629
| OMIM = 608393
| RefSeq =
| UniProt =
| PDB =
| ECnumber =
| Chromosome = 13
| Arm = q
| Band = 12.2
| LocusSupplementaryData =
}}
'''''Microcephalin''''' ('''''MCPH1''''') is one of six [[gene]]s causing primary [[microcephaly]] ({{OMIM|251200}}) when non-functional [[mutation]]s exist in the [[homozygous]] state. Derived from the [[Greek language|Greek]] words for "small" and "head", this condition is characterised by a severely diminished [[human brain|brain]].<ref>
{{cite journal
| author = Jackson, A.P., ''et al.''
| year = 1998
| title = Primary Autosomal Recessive Microcephaly (MCPH1) Maps to Chromosome 8p22-pter
| journal = [[Am. J. Hum. Genet.]]
| volume = 63
| pages = 541-546
| url = http://www.journals.uchicago.edu/AJHG/journal/issues/v63n2/980122/980122.html
| pmid = 9683597}}
</ref><ref name="microcephalin"/>
Hence it has been assumed that normal variants have a role in brain development.<ref>{{cite journal
| author = Wang, Y.Q. & B. Su
| year = 2004
| title = Molecular evolution of microcephalin, a gene determining human brain size
| journal = [[Hum. Mol. Genet.]]
| volume = 13
| pages = 1131-1137
| doi = 10.1093/hmg/ddh127}}
</ref><ref>
{{cite journal
| author = Evans, P.D., ''et al.''
| year = 2004
| title = Reconstructing the evolutionary history of microcephalin, a gene controlling human brain size
| journal = [[Hum. Mol. Genet.]]
| volume = 13
| pages = 1139-1145
| doi = 10.1093/hmg/ddh126}}
</ref> But no effect on [[mind|mental]] ability, brain size or [[behavior]] is attributable to either this or another similarly studied microcephaly gene, ''[[ASPM]]''.<ref>{{cite journal
| author = R.P. Woods, ''et al.''
| year = 2006
| title = Normal variants of Microcephalin and ASPM do not account for brain size variability
| journal = [[Hum. Mol. Genet.]]
| volume = 15
| issue = 12
| pages = 2025-2029
| doi = 10.1093/hmg/ddl126}}
</ref>
<ref>{{cite journal
|author=J.P. Rushton, P.A. Vernon & T.A. Bons
|month=22 Apr.,
|year=2007
|title=No evidence that polymorphisms of brain regulator genes ''Microcephalin'' and ''ASPM'' are associated with general mental ability, head circumference or altruism
|journal=[[Biol. Lett.]]
|volume=3
|issue=2
|pages=157-160
|doi=10.1098/rsbl.2006.0586
}}</ref>


== Expression in the brain ==
== Expression in the brain ==
Line 186: Line 50:
==Evolution==
==Evolution==


A derived form of ''MCPH1'' called [[haplogroup]] D appeared about 37,000 years ago (anytime between 14,000 and 60,000 years ago) and has spread to become the more common form throughout the world except [[Sub-Saharan Africa]]. The timing of its emergence may have closely preceded the [[Upper Paleolithic]], when people started colonising Europe, although the margin of error is substantial<ref>
A derived form of ''MCPH1'' called [[haplogroup]] D appeared about 37,000 years ago (any time between 14,000 and 60,000 years ago) and has spread to become the most common form of microcephalin throughout the world except [[Sub-Saharan Africa]]; this rapid spread suggests a [[selective sweep]].<ref name = "AutoR3-7"/><ref name = "AutoR3-10"/>  However, scientists have not identified the [[evolutionary pressure]]s that may have caused the spread of these mutations.<ref name = "AutoR3-11"/> This variant of the gene is thought to contribute to increased brain volume.<ref>http://www.plosone.org/article/info:doi/10.1371/journal.pone.0010648</ref> Modern distributions of [[chromosome]]s bearing the ancestral forms of ''MCPH1'' and ''[[ASPM (gene)|ASPM]]'' are correlated with the incidence of [[tonal language]]s, but the nature of this relationship is far from clear.<ref name = "AutoR3-9"/>
{{cite journal
| author = Evans, P.D., ''et al.''
| year = 2005
| title = ''Microcephalin'', a gene regulating brain size, continues to evolve adaptively in humans
| journal = [[Science (journal)|Science]]
| volume = 309
| pages = 1717-20
| doi = 10.1126/science.1113722
| laysummary = http://www.nytimes.com/2005/09/08/science/08cnd-brain.html?ex=1283832000&en=631902c8dabfb269&ei=5090&partner=rssuserland&emc=rss
| laysource = New York Times: Researchers Say Human Brain Is Still Evolving}}
</ref> and there is evidence that the transition to the Upper Paleolithic occurred in Africa before spreading to Europe.<ref>{{cite journal
|author=Ambrose, S.H.
|year=1998
|title=Chronology of the Later Stone Age and food production in East Africa
|journal=J. Archaeol. Sci.
|volume=25
|issue=4
|pages=377-392
|doi=10.1006/jasc.1997.0277
|laysummary=http://www.sciencedaily.com/releases/1998/07/980707073901.htm
|laysource="Modern" Behavior Began 40,000 Years Ago In Africa, Evidence Suggests (Science Daily.com)}}
</ref> Doubts concerning origins aside, modern distributions of [[chromosome]]s bearing the ancestral forms of ''MCPH1'' and ''[[ASPM|MCPH5]]'' coincide with the incidence of [[tonal language]]s, although the nature of this relationship can only be guessed at.<ref>
{{cite journal
| author = Dediu, D. & D.R. Ladd
| year = 2007
| title = Linguistic tone is related to the population frequency of the adaptive haplogroups of two brain size genes, ASPM and Microcephalin | journal = [[Proc. Nat. Acad. Sci.]]
| doi = 10.1073/pnas.0610848104
| url = http://www.ling.ed.ac.uk/~s0340638/tonegenes/tonegenessummary.html}}
</ref>


Haplogroup D may have originated from a lineage separated from modern humans approximately 1.1 million years ago and later introgressed into humans. This finding supports the possibility of admixture between modern humans and extinct ''[[archaic Homo sapiens|Homo]]'' spp. ([[Neanderthal]]s being one possibility).<ref>[http://www.pnas.org/cgi/content/abstract/0606966103v1 PNAS article ''Evidence that the adaptive allele of the brain size gene microcephalin introgressed into Homo sapiens from an archaic Homo lineage''] Published online before print November 7, 2006 by Proceedings of the National Academy of Sciences of the USA</ref> On the other hand the sample of 89 individuals with only nine Africans used in the study has been criticized as being inadequate for the conclusion the paper draws, and comparable studies demonstrate that undersampling specific areas of East/Central Africa may lead to unwarranted conclusions.<ref name="pmid17175528">{{cite journal |author=Shimada MK, Panchapakesan K, Tishkoff SA, Nato AQ, Hey J |title=Divergent haplotypes and human history as revealed in a worldwide survey of X-linked DNA sequence variation |journal=Mol. Biol. Evol. |volume=24 |issue=3 |pages=687-98 |year=2007 |pmid=17175528 |doi=10.1093/molbev/msl196 |issn=}}</ref> Additionally, scientists have not identified the [[evolutionary pressure]]s that caused the supposed spread of these mutations.<ref>{{cite journal
Haplogroup D may have originated from a lineage separated from modern humans approximately 1.1 million years ago and later introgressed into humans. This finding supports the possibility of [[Archaic human admixture with modern humans|admixture between modern humans and extinct ''Homo'' spp]].<ref name = "AutoR3-10"/> While [[Neanderthal]]s have been suggested as the possible source of this haplotype, the haplotype was not found in the individuals used to prepare the first draft of the Neanderthal genome.<ref name = "Human genome tales"/><ref name = "green"/>
| author = Mekel-Bobrov, N., ''et al.''
| title = The ongoing adaptive evolution of ASPM and Microcephalin is not explained by increased intelligence
| year = 2007
| journal = [[Hum. Mol. Genet.]]
| pages = adv. access
| doi = 10.1093/hmg/ddl487}}
</ref>


==Controversy==
==Controversy==
Although [[Chinese people|Chinese]] himself, [[Bruce Lahn]]'s public announcements some brain-genes are more advanced on some continents than on others were conscripted by websites promoting white "racialism". An American xenophobic magazine embraced the research as "the moment the antiracists and egalitarians have dreaded." The [[National Review Online]], wrote that as a result of the findings, "our cherished national dream of a well-mixed and harmonious meritocracy may be unattainable."


Lahn's study began to attract considerable controversy in the science world, where he was criticized for overinterpreting and sensationalizing his findings. One of the co-authors, Sarah Tishkoff, distanced herself from the study saying that she was bothered how the paper drew a link between the genetic changes and the rise of civilization. She felt that any conclusions about why the mutations spread were premature and that it is "very simplistic" to confer so many behavioural traits on a single gene. [[Richard Lewontin]] considers the two published papers as "egregious examples of going well beyond the data to try to make a splash." All the while maintaining that the science of his studies were sound, Lahn has nevertheless conceded that there is no real evidence [[natural selection]] had acted on cognition or intelligence through the genes. Tainted by the experience, he is engaging himself with other areas of study.<ref>[http://online.wsj.com/public/article/SB115040765329081636-T5DQ4jvnwqOdVvsP_XSVG_lvgik_20060628.html?mod=blogs scientists study of brain gene sparks a backlash]</ref><ref>{{cite journal
The research results began to attract considerable controversy in the science world. [[John Derbyshire]], writing in The [[National Review Online]], wrote that as a result of the findings, "our cherished national dream of a well-mixed and harmonious meritocracy [...] may be unattainable."<ref name = "AutoR3-13"/> [[Richard Lewontin]] considers the two published papers as "egregious examples of going well beyond the data to try to make a splash." [[Bruce Lahn]] maintains that the science of the studies is sound, and freely admits that a direct link between these particular genes and either cognition or intelligence has not been clearly established. Lahn is now engaging himself with other areas of study.<ref name = "AutoR3-14"/><ref name = "AutoR3-15"/>
|author=Balter, M.
 
|month=Dec
Later [[Genome-wide association study|genetic association studies]] by Mekel-Bobrov ''et al.'' and Evans ''et al.'' also reported that the genotype for MCPH1 was under positive selection. An analysis by Timpson ''et al.'', found "no meaningful associations with brain size and various cognitive measures".<ref name = "AutoR3-16"/> However, a later study by Rimol et al.<ref name="Rimol_2010"/> demonstrated a link between brain size and structure and two microcephaly genes, MCPH1 (only in females) and CDK5RAP2 (only in males). In contrast to previous studies, which only considered small numbers of exonic single nucleotide polymorphisms (SNPs) and did not investigate sex-specific effects, this study used microarray technology to genotype a range of SNPs associated with all four MCPH genes, including upstream and downstream regions, and allowed for separate effects for males and females.
|year=2006
 
|title=Bruce Lahn profile: Brain man makes waves with claims of recent human evolution
==Model organisms==
|journal=[[Science (journal)|Science]]
{| class="wikitable sortable collapsible collapsed" border="1" cellpadding="2" style="float: right;" |
|volume=314
|+ ''Mcph1'' knockout mouse phenotype
|issue=5807
|-
|pages=1871 - 1873
! Characteristic!! Phenotype
|doi=10.1126/science.314.5807.1871}}
 
</ref>
|-
| [[Homozygote]] viability || bgcolor="#488ED3"|Normal
|-
| Fertility || bgcolor="#C40000"|Abnormal
|-
| Body weight || bgcolor="#488ED3"|Normal
|-
| [[Open Field (animal test)|Anxiety]] || bgcolor="#488ED3"|Normal
|-
| Neurological assessment || bgcolor="#C40000"|Abnormal<ref name="Neurological assessment">{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MBGX/neurological-assessment/ |title=Neurological assessment data for Mcph1 |publisher=Wellcome Trust Sanger Institute}}</ref>
|-
| Grip strength || bgcolor="#488ED3"|Normal
|-
| [[Hot plate test|Hot plate]] || bgcolor="#488ED3"|Normal
|-
| [[Dysmorphology]] || bgcolor="#488ED3"|Normal
|-
| [[Indirect calorimetry]] || bgcolor="#488ED3"|Normal
|-
| [[Glucose tolerance test]] || bgcolor="#488ED3"|Normal
|-
| [[Auditory brainstem response]] || bgcolor="#C40000"|Abnormal
|-
| [[Dual-energy X-ray absorptiometry|DEXA]] || bgcolor="#488ED3"|Normal
|-
| [[Radiography]] || bgcolor="#488ED3"|Normal
|-
| Body temperature || bgcolor="#488ED3"|Normal
|-
| Eye morphology || bgcolor="#C40000"|Abnormal<ref name="Eye morphology">{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MBGX/eye-morphology/ |title=Eye morphology data for Mcph1 |publisher=Wellcome Trust Sanger Institute}}</ref>
|-
| [[Clinical chemistry]] || bgcolor="#488ED3"|Normal
|-
| [[Haematology]] || bgcolor="#488ED3"|Normal
|-
| [[Micronucleus test]] || bgcolor="#C40000"|Abnormal
|-
| Heart weight || bgcolor="#488ED3"|Normal
|-
| Skin Histopathology || bgcolor="#488ED3"|Normal
|-
| Brain histopathology || bgcolor="#488ED3"|Normal
|-
| Eye Histopathology || bgcolor="#C40000"|Abnormal
|-
| ''[[Salmonella]]'' infection || bgcolor="#488ED3"|Normal<ref name="''Salmonella'' infection">{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MBGX/salmonella-challenge/ |title=''Salmonella'' infection data for Mcph1 |publisher=Wellcome Trust Sanger Institute}}</ref>
|-
| ''[[Citrobacter]]'' infection || bgcolor="#488ED3"|Normal<ref name="''Citrobacter'' infection">{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MBGX/citrobacter-challenge/ |title=''Citrobacter'' infection data for Mcph1 |publisher=Wellcome Trust Sanger Institute}}</ref>
|-
| colspan=2; style="text-align: center;" | All tests and analysis from<ref name="mgp_reference">{{cite journal |doi=10.1111/j.1755-3768.2010.4142.x |title=The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice |year=2010 |last1=Gerdin |first1=AK |journal=Acta Ophthalmologica |volume=88 |pages=0}}</ref><ref>[http://www.sanger.ac.uk/mouseportal/ Mouse Resources Portal], Wellcome Trust Sanger Institute.</ref>
|}
[[Model organism]]s have been used in the study of MCPH1 function. A conditional [[knockout mouse]] line, called ''Mcph1<sup>tm1a(EUCOMM)Wtsi</sup>''<ref name="allele_ref">{{cite web |url=http://www.knockoutmouse.org/martsearch/search?query=Mcph1 |title=International Knockout Mouse Consortium}}</ref><ref name="mgi_allele_ref">{{cite web |url=http://www.informatics.jax.org/searchtool/Search.do?query=MGI:4431685 |title=Mouse Genome Informatics}}</ref> was generated as part of the [[International Knockout Mouse Consortium]] program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.<ref name="pmid21677750">{{cite journal |doi=10.1038/nature10163 |title=A conditional knockout resource for the genome-wide study of mouse gene function |year=2011 |last1=Skarnes |first1=William C. |last2=Rosen |first2=Barry |last3=West |first3=Anthony P. |last4=Koutsourakis |first4=Manousos |last5=Bushell |first5=Wendy |last6=Iyer |first6=Vivek |last7=Mujica |first7=Alejandro O. |last8=Thomas |first8=Mark |last9=Harrow |first9=Jennifer |last10=Cox |first10=Tony |last11=Jackson |first11=David |last12=Severin |first12=Jessica |last13=Biggs |first13=Patrick |last14=Fu |first14=Jun |last15=Nefedov |first15=Michael |last16=De Jong |first16=Pieter J. |last17=Stewart |first17=A. Francis |last18=Bradley |first18=Allan |journal=Nature |volume=474 |issue=7351 |pages=337–42 |pmid=21677750 |pmc=3572410|display-authors=8 }}</ref><ref name="mouse_library">{{cite journal |doi=10.1038/474262a |title=Mouse library set to be knockout |year=2011 |last1=Dolgin |first1=Elie |journal=Nature |volume=474 |issue=7351 |pages=262–3 |pmid=21677718}}</ref><ref name="mouse_for_all_reasons">{{cite journal |doi=10.1016/j.cell.2006.12.018 |title=A Mouse for All Reasons |year=2007 |journal=Cell |volume=128 |pages=9–13 |pmid=17218247 |author1=International Mouse Knockout Consortium |last2=Collins |first2=FS |last3=Rossant |first3=J |last4=Wurst |first4=W |issue=1}}</ref>
 
Male and female animals underwent a standardized [[phenotypic screen]] to determine the effects of deletion.<ref name="mgp_reference" /><ref name="pmid21722353">{{cite journal |doi=10.1186/gb-2011-12-6-224 |title=The mouse genetics toolkit: Revealing function and mechanism |year=2011 |last1=Van Der Weyden |first1=Louise |last2=White |first2=Jacqueline K |last3=Adams |first3=David J |last4=Logan |first4=Darren W |journal=Genome Biology |volume=12 |issue=6 |pages=224 |pmid=21722353 |pmc=3218837}}</ref> Twenty four tests were carried out on [[mutant]] mice and six significant abnormalities were observed.<ref name="mgp_reference" /> [[Homozygous]] [[mutant]] animals were infertile, did not have a [[Pinna (anatomy)|pinna]] reflex, had a moderate degree of [[hearing impairment]], abnormal cornea morphology, lens morphology and [[cataracts]], and displayed chromosomal instability in a [[micronucleus test]].<ref name="mgp_reference" />


==Other names==
== Family members ==
The microcephaly-related loci ''MCPH 3'', ''5'' and ''6'' are usually classified by their alternate names [[CDK5RAP2]], [[ASPM]] and [[CENPJ]] respectively, according to their other roles. (More information can be found from the articles dedicated to them and links in the information boxes.)
In addition to MCPH1 the other five family members are: [[MCPH2]], [[CDK5RAP2]], [[MCPH4]], [[ASPM (gene)|ASPM]] and [[CENPJ]].


==See also==
==See also==
* [[Genetic determinism]]
* [[Genetic determinism]]
* [[Race and genetics#Modern civilization and genetics|Race and genetics]]
* [[Race and genetics]]
* [[Race and Intelligence#The human genome and intelligence|Race and intelligence]]
* [[Race and intelligence]]
* [[Bruce Lahn]]
* [[Bruce Lahn]]
{{clear}}


==References==
==References==
{{reflist|2}}
{{reflist | colwidth = 30em | refs =
 
<ref name="microcephalin">
{{cite journal |doi=10.1086/341283 |title=Identification of Microcephalin, a Protein Implicated in Determining the Size of the Human Brain |year=2002 |last1=Jackson |first1=Andrew P. |last2=Eastwood |first2=Helen |last3=Bell |first3=Sandra M. |last4=Adu |first4=Jimi |last5=Toomes |first5=Carmel |last6=Carr |first6=Ian M. |last7=Roberts |first7=Emma |last8=Hampshire |first8=Daniel J. |last9=Crow |first9=Yanick J. |last10=Mighell |first10=Alan J. |last11=Karbani |first11=Gulshan |last12=Jafri |first12=Hussain |last13=Rashid |first13=Yasmin |last14=Mueller |first14=Robert F. |last15=Markham |first15=Alexander F. |last16=Woods |first16=C. Geoffrey |journal=The American Journal of Human Genetics |volume=71 |pages=136–42 |pmid=12046007 |issue=1 |pmc=419993|display-authors=8 }}
</ref>
 
<ref name="AutoR3-1">
{{cite journal |doi=10.1016/S0092-8674(03)00430-6 |title=Multiple Tumor Suppressor Pathways Negatively Regulate Telomerase |year=2003 |last1=Lin |first1=Shiaw-Yih |last2=Elledge |first2=Stephen J |journal=Cell |volume=113 |issue=7 |pages=881–9 |pmid=12837246}}
</ref>
 
<ref name="AutoR3-2">
{{cite journal |doi=10.1086/301966 |title=Primary Autosomal Recessive Microcephaly (MCPH1) Maps to Chromosome 8p22-pter |year=1998 |last1=Jackson |first1=Andrew P. |last2=McHale |first2=Duncan P. |last3=Campbell |first3=David A. |last4=Jafri |first4=Hussain |last5=Rashid |first5=Yasmin |last6=Mannan |first6=Jovaria |last7=Karbani |first7=Gulshan |last8=Corry |first8=Peter |last9=Levene |first9=Malcolm I. |last10=Mueller |first10=Robert F. |last11=Markham |first11=Alexander F. |last12=Lench |first12=Nicholas J. |last13=Woods |first13=C. Geoffrey |journal=The American Journal of Human Genetics |volume=63 |issue=2 |pages=541–6 |pmid=9683597 |pmc=1377307|display-authors=8 }}
</ref>
 
<ref name="AutoR3-3">
{{cite journal |doi=10.1093/hmg/ddh127 |title=Molecular evolution of microcephalin, a gene determining human brain size |year=2004 |last1=Wang |first1=Y.-q. |journal=Human Molecular Genetics |volume=13 |issue=11 |pages=1131–7 |pmid=15056608 |last2=Su |first2=B}}
</ref>
 
<ref name="AutoR3-4">
{{cite journal |doi=10.1093/hmg/ddh126 |title=Reconstructing the evolutionary history of microcephalin, a gene controlling human brain size |year=2004 |last1=Evans |first1=P. D. |journal=Human Molecular Genetics |volume=13 |issue=11 |pages=1139–45 |pmid=15056607 |last2=Anderson |first2=JR |last3=Vallender |first3=EJ |last4=Choi |first4=SS |last5=Lahn |first5=BT}}
</ref>
 
<ref name="AutoR3-5">
{{cite journal |doi=10.1093/hmg/ddl126 |title=Normal variants of Microcephalin and ASPM do not account for brain size variability |year=2006 |last1=Woods |first1=R. P. |journal=Human Molecular Genetics |volume=15 |issue=12 |pages=2025–9 |pmid=16687438 |last2=Freimer |first2=NB |last3=De Young |first3=JA |last4=Fears |first4=SC |last5=Sicotte |first5=NL |last6=Service |first6=SK |last7=Valentino |first7=DJ |last8=Toga |first8=AW |last9=Mazziotta |first9=JC }}
</ref>
 
<ref name="AutoR3-6">
{{cite journal |doi=10.1098/rsbl.2006.0586 |title=No evidence that polymorphisms of brain regulator genes Microcephalin and ASPM are associated with general mental ability, head circumference or altruism |year=2007 |last1=Rushton |first1=J. P. |last2=Vernon |first2=P. A |last3=Bons |first3=T. A. |journal=Biology Letters |volume=3 |issue=2 |pages=157–60 |pmid=17251122 |pmc=2104484}}
</ref>
 
<ref name="AutoR3-7">
{{cite journal |bibcode=2005Sci...309.1717E |laysummary=https://www.nytimes.com/2005/09/08/science/08cnd-brain.html |laysource=The New York Times |laydate=September 8, 2005 |title=Microcephalin, a Gene Regulating Brain Size, Continues to Evolve Adaptively in Humans |last1=Evans |first1=Patrick D. |last2=Gilbert |first2=Sandra L. |last3=Mekel-Bobrov |first3=Nitzan |last4=Vallender |first4=Eric J. |last5=Anderson |first5=Jeffrey R. |last6=Vaez-Azizi |first6=Leila M. |last7=Tishkoff |first7=Sarah A. |last8=Hudson |first8=Richard R. |last9=Lahn |first9=Bruce T. |volume=309 |year=2005 |pages=1717–20 |journal=Science |doi=10.1126/science.1113722 |pmid=16151009 |issue=5741 }}
</ref>
 
<ref name="AutoR3-9">
{{cite journal |bibcode=2007PNAS..10410944D |title=Linguistic tone is related to the population frequency of the adaptive haplogroups of two brain size genes, ASPM and Microcephalin |last1=Dediu |first1=Dan |last2=Ladd |first2=D. Robert |volume=104 |year=2007 |pages=10944–9 |journal=Proceedings of the National Academy of Sciences |doi=10.1073/pnas.0610848104 |issue=26 |jstor=25436044 |pmid=17537923 |pmc=1904158}}
</ref>
 
<ref name="AutoR3-10">
{{cite journal |bibcode=2006PNAS..10318178E |jstor=30051829 |title=Evidence that the adaptive allele of the brain size gene microcephalin introgressed into Homo sapiens from an archaic Homo lineage |last1=Evans |first1=Patrick D. |last2=Mekel-Bobrov |first2=Nitzan |last3=Vallender |first3=Eric J. |last4=Hudson |first4=Richard R. |last5=Lahn |first5=Bruce T. |volume=103 |year=2006 |pages=18178–83 |journal=Proceedings of the National Academy of Sciences |doi=10.1073/pnas.0606966103 |issue=48 |pmid=17090677 |pmc=1635020}}
</ref>
 
<ref name = "Human genome tales">
{{cite journal |doi=10.1126/science.323.5916.866 |title=NEANDERTAL GENOMICS: Tales of a Prehistoric Human Genome |year=2009 |last1=Pennisi |first1=E. |journal=Science |volume=323 |issue=5916 |pages=866–71 |pmid=19213888}}
</ref>
 
<ref name = "green">
{{cite journal |bibcode=2010Sci...328..710G |title=A Draft Sequence of the Neandertal Genome |last1=Green |first1=Richard E. |last2=Krause |first2=Johannes |last3=Briggs |first3=Adrian W. |last4=Maricic |first4=Tomislav |last5=Stenzel |first5=Udo |last6=Kircher |first6=Martin |last7=Patterson |first7=Nick |last8=Li |first8=Heng |last9=Zhai |first9=Weiwei |last10=Fritz |first10=M. H. Y. |last11=Hansen |first11=N. F. |last12=Durand |first12=E. Y. |last13=Malaspinas |first13=A. S. |last14=Jensen |first14=J. D. |last15=Marques-Bonet |first15=T. |last16=Alkan |first16=C. |last17=Prufer |first17=K. |last18=Meyer |first18=M. |last19=Burbano |first19=H. A. |last20=Good |first20=J. M. |last21=Schultz |first21=R. |last22=Aximu-Petri |first22=A. |last23=Butthof |first23=A. |last24=Hober |first24=B. |last25=Hoffner |first25=B. |last26=Siegemund |first26=M. |last27=Weihmann |first27=A. |last28=Nusbaum |first28=C. |last29=Lander |first29=E. S. |last30=Russ |first30=C. |volume=328 |year=2010 |pages=710–22 |journal=Science |doi=10.1126/science.1188021 |pmid=20448178 |issue=5979|display-authors=8 }}
</ref>
 
<ref name="AutoR3-11">
{{cite journal |doi=10.1093/hmg/ddl487 |title=The ongoing adaptive evolution of ASPM and Microcephalin is not explained by increased intelligence |year=2006 |last1=Mekel-Bobrov |first1=N. |last2=Posthuma |first2=D. |last3=Gilbert |first3=S. L. |last4=Lind |first4=P. |last5=Gosso |first5=M. F. |last6=Luciano |first6=M. |last7=Harris |first7=S. E. |last8=Bates |first8=T. C. |last9=Polderman |first9=T. J.C. |last10=Whalley |first10=L. J. |last11=Fox |first11=H. |last12=Starr |first12=J. M. |last13=Evans |first13=P. D. |last14=Montgomery |first14=G. W. |last15=Fernandes |first15=C. |last16=Heutink |first16=P. |last17=Martin |first17=N. G. |last18=Boomsma |first18=D. I. |last19=Deary |first19=I. J. |last20=Wright |first20=M. J. |last21=De Geus |first21=E. J.C. |last22=Lahn |first22=B. T. |journal=Human Molecular Genetics |volume=16 |issue=6 |pages=600–8 |pmid=17220170|display-authors=8 }}
</ref>
 
<ref name="AutoR3-13">{{cite news
|url=http://www.johnderbyshire.com/Opinions/HumanSciences/specterofdifference.html
|title=The specter of difference
|author=John Derbyshire
|accessdate=2008-09-21
|work=[[National Review]]
|date=November 2005
}}</ref>
 
<ref name="AutoR3-14">[https://www.wsj.com/articles/SB115040765329081636 scientists study of brain gene sparks a backlash]</ref>
 
<ref name="AutoR3-15">
{{cite journal |doi=10.1126/science.314.5807.1871 |title=BRUCE LAHN PROFILE: Brain Man Makes Waves with Claims of Recent Human Evolution |year=2006 |last1=Balter |first1=M. |journal=Science |volume=314 |issue=5807 |pages=1871–3 |pmid=17185582}}
</ref>
 
<ref name="AutoR3-16">
{{cite journal |bibcode=2007Sci...317.1036T |title=Comment on Papers by Evans et al. And Mekel-Bobrov et al. On Evidence for Positive Selection of MCPH1 and ASPM |last1=Timpson |first1=Nicholas |last2=Heron |first2=Jon |last3=Davey Smith |first3=George |last4=Enard |first4=Wolfgang |volume=317 |year=2007 |pages=1036 |journal=Science |doi=10.1126/science.1141705 |pmid=17717170 |issue=5841}}
</ref>
 
}}


== External links ==
== External links ==
* [http://www.nyas.org/podcasts/snc/neanderthal.mp3 Neanderthal Brains - a lecture by Bruce Lahn] - from the [[New York Academy of Sciences|NYAS]] podcasts.
*[http://www.nyas.org/podcasts/snc/neanderthal.mp3 Neanderthal Brains - a lecture by Bruce Lahn] - from the [[New York Academy of Sciences|NYAS]] podcasts.
*{{cite book |pmid=20301772 |chapterurl=https://www.ncbi.nlm.nih.gov/books/NBK9587/ |year=1993 |last1=Passemard |first1=Sandrine |last2=Kaindl |first2=Angela M |last3=Titomanlio |first3=Luigi |last4=Gerard |first4=Benedicte |last5=Gressens |first5=Pierre |last6=Verloes |first6=Alain |chapter=Primary Autosomal Recessive Microcephaly |title=GeneReviews |editor1-first=Roberta A |editor1-last=Pagon |editor2-first=Thomas D |editor2-last=Bird |editor3-first=Cynthia R |editor3-last=Dolan |editor4-first=Karen |editor4-last=Stephens |editor5-first=Margaret P |editor5-last=Adam}}
*[http://www.medterms.com/script/main/art.asp?articlekey=34399 Medterms]
*[http://www.medterms.com/script/main/art.asp?articlekey=34399 Medterms]
*[http://www.jbc.org/cgi/content/abstract/279/33/34091 JBC]
*{{cite journal |doi=10.1074/jbc.C400139200 |title=Microcephalin is a DNA Damage Response Protein Involved in Regulation of CHK1 and BRCA1 |year=2004 |last1=Xu |first1=X. |journal=Journal of Biological Chemistry |volume=279 |issue=33 |pages=34091–4 |pmid=15220350 |last2=Lee |first2=J |last3=Stern |first3=DF}}
*[http://hmg.oupjournals.org/cgi/content/short/ddh127v1 OUP Journals]
*{{cite journal |doi=10.1093/hmg/ddh127 |title=Molecular evolution of microcephalin, a gene determining human brain size |year=2004 |last1=Wang |first1=Y.-q. |journal=Human Molecular Genetics |volume=13 |issue=11 |pages=1131–7 |pmid=15056608 |last2=Su |first2=B}}
*[http://harvester.embl.de/harvester/Q6RA/Q6RA50.htm EMBL]
*[http://harvester.embl.de/harvester/Q6RA/Q6RA50.htm EMBL]{{http://ensurehealth.net|date=Feb 2016}}
*{{cite journal |doi=10.1016/j.intell.2008.04.001 |title=Recently-derived variants of brain-size genes ASPM, MCPH1, CDK5RAP and BRCA1 not associated with general cognition, reading or language |year=2008 |last1=Bates |first1=Timothy C. |last2=Luciano |first2=Michelle |last3=Lind |first3=Penelope A. |last4=Wright |first4=Margaret J. |last5=Montgomery |first5=Grant W. |last6=Martin |first6=Nicholas G. |journal=Intelligence |volume=36 |issue=6 |pages=689}}


[[Category:Genes]]
[[Category:Animal genes]]
[[Category:Early hominids]]
[[Category:Human evolution]]
{{WikiDoc Sources}}
[[Category:Genes mutated in mice]]

Revision as of 20:09, 3 November 2017

microcephaly,
primary autosomal recessive 1
File:Microcephalin.png
Crystallographic structure of the N-terminal BRCT domain of human microcephalin (MCPH1)[1]
Identifiers
SymbolMCPH1
Alt. symbolsMicrocephalin,[2] BRIT1[3]
Entrez79648
HUGO6954
OMIM607117
UniProtQ8NEM0
Other data
LocusChr. 8 p23
Microcephalin protein
Identifiers
SymbolMicrocephalin
PfamPF12258
InterProIPR022047

Microcephalin (MCPH1) is a gene that is expressed during fetal brain development. Certain mutations in MCPH1, when homozygous, cause primary microcephaly—a severely diminished brain.[2][4][5] Hence it has been assumed that variants have a role in brain development,[6][7] but in normal individuals no effect on mental ability or behavior has yet been demonstrated in either this or another similarly studied microcephaly gene, ASPM.[8][9] However, an association has been established between normal variation in brain structure as measured with MRI (i.e., primarily cortical surface area and total brain volume) and common genetic variants within both the MCPH1 gene and another similarly studied microcephaly gene, CDK5RAP2.[10]

Structure

Microcephalin proteins contain the following three domains:

Expression in the brain

MCPH1 is expressed in the fetal brain, in the developing forebrain, and on the walls of the lateral ventricles. Cells of this area divide, producing neurons that migrate to eventually form the cerebral cortex.

Evolution

A derived form of MCPH1 called haplogroup D appeared about 37,000 years ago (any time between 14,000 and 60,000 years ago) and has spread to become the most common form of microcephalin throughout the world except Sub-Saharan Africa; this rapid spread suggests a selective sweep.[11][12] However, scientists have not identified the evolutionary pressures that may have caused the spread of these mutations.[13] This variant of the gene is thought to contribute to increased brain volume.[14] Modern distributions of chromosomes bearing the ancestral forms of MCPH1 and ASPM are correlated with the incidence of tonal languages, but the nature of this relationship is far from clear.[15]

Haplogroup D may have originated from a lineage separated from modern humans approximately 1.1 million years ago and later introgressed into humans. This finding supports the possibility of admixture between modern humans and extinct Homo spp.[12] While Neanderthals have been suggested as the possible source of this haplotype, the haplotype was not found in the individuals used to prepare the first draft of the Neanderthal genome.[16][17]

Controversy

The research results began to attract considerable controversy in the science world. John Derbyshire, writing in The National Review Online, wrote that as a result of the findings, "our cherished national dream of a well-mixed and harmonious meritocracy [...] may be unattainable."[18] Richard Lewontin considers the two published papers as "egregious examples of going well beyond the data to try to make a splash." Bruce Lahn maintains that the science of the studies is sound, and freely admits that a direct link between these particular genes and either cognition or intelligence has not been clearly established. Lahn is now engaging himself with other areas of study.[19][20]

Later genetic association studies by Mekel-Bobrov et al. and Evans et al. also reported that the genotype for MCPH1 was under positive selection. An analysis by Timpson et al., found "no meaningful associations with brain size and various cognitive measures".[21] However, a later study by Rimol et al.[10] demonstrated a link between brain size and structure and two microcephaly genes, MCPH1 (only in females) and CDK5RAP2 (only in males). In contrast to previous studies, which only considered small numbers of exonic single nucleotide polymorphisms (SNPs) and did not investigate sex-specific effects, this study used microarray technology to genotype a range of SNPs associated with all four MCPH genes, including upstream and downstream regions, and allowed for separate effects for males and females.

Model organisms

Model organisms have been used in the study of MCPH1 function. A conditional knockout mouse line, called Mcph1tm1a(EUCOMM)Wtsi[28][29] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[30][31][32]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[26][33] Twenty four tests were carried out on mutant mice and six significant abnormalities were observed.[26] Homozygous mutant animals were infertile, did not have a pinna reflex, had a moderate degree of hearing impairment, abnormal cornea morphology, lens morphology and cataracts, and displayed chromosomal instability in a micronucleus test.[26]

Family members

In addition to MCPH1 the other five family members are: MCPH2, CDK5RAP2, MCPH4, ASPM and CENPJ.

See also

References

  1. PDB: 3KTF​; Singh N, Heroux A, Thompson JR, Mer G (2010). "Structure of the N-terminal BRCT domain of human microcephalin (MCPH1)". Protein Data Bank. doi:10.2210/pdb3ktf/pdb.
  2. 2.0 2.1 Jackson, Andrew P.; Eastwood, Helen; Bell, Sandra M.; Adu, Jimi; Toomes, Carmel; Carr, Ian M.; Roberts, Emma; Hampshire, Daniel J.; et al. (2002). "Identification of Microcephalin, a Protein Implicated in Determining the Size of the Human Brain". The American Journal of Human Genetics. 71 (1): 136–42. doi:10.1086/341283. PMC 419993. PMID 12046007.
  3. Lin, Shiaw-Yih; Elledge, Stephen J (2003). "Multiple Tumor Suppressor Pathways Negatively Regulate Telomerase". Cell. 113 (7): 881–9. doi:10.1016/S0092-8674(03)00430-6. PMID 12837246.
  4. Online Mendelian Inheritance in Man (OMIM) 251200
  5. Jackson, Andrew P.; McHale, Duncan P.; Campbell, David A.; Jafri, Hussain; Rashid, Yasmin; Mannan, Jovaria; Karbani, Gulshan; Corry, Peter; et al. (1998). "Primary Autosomal Recessive Microcephaly (MCPH1) Maps to Chromosome 8p22-pter". The American Journal of Human Genetics. 63 (2): 541–6. doi:10.1086/301966. PMC 1377307. PMID 9683597.
  6. Wang, Y.-q.; Su, B (2004). "Molecular evolution of microcephalin, a gene determining human brain size". Human Molecular Genetics. 13 (11): 1131–7. doi:10.1093/hmg/ddh127. PMID 15056608.
  7. Evans, P. D.; Anderson, JR; Vallender, EJ; Choi, SS; Lahn, BT (2004). "Reconstructing the evolutionary history of microcephalin, a gene controlling human brain size". Human Molecular Genetics. 13 (11): 1139–45. doi:10.1093/hmg/ddh126. PMID 15056607.
  8. Woods, R. P.; Freimer, NB; De Young, JA; Fears, SC; Sicotte, NL; Service, SK; Valentino, DJ; Toga, AW; Mazziotta, JC (2006). "Normal variants of Microcephalin and ASPM do not account for brain size variability". Human Molecular Genetics. 15 (12): 2025–9. doi:10.1093/hmg/ddl126. PMID 16687438.
  9. Rushton, J. P.; Vernon, P. A; Bons, T. A. (2007). "No evidence that polymorphisms of brain regulator genes Microcephalin and ASPM are associated with general mental ability, head circumference or altruism". Biology Letters. 3 (2): 157–60. doi:10.1098/rsbl.2006.0586. PMC 2104484. PMID 17251122.
  10. 10.0 10.1 Rimol, Lars M.; Agartz, Ingrid; Djurovic, Srdjan; Brown, Andrew A.; Roddey, J. Cooper; Kahler, Anna K.; Mattingsdal, Morten; Athanasiu, Lavinia; et al. (2010). "Sex-dependent association of common variants of microcephaly genes with brain structure". Proceedings of the National Academy of Sciences. 107 (1): 384–8. Bibcode:2010PNAS..107..384R. doi:10.1073/pnas.0908454107. JSTOR 40536283. PMC 2806758. PMID 20080800.
  11. Evans, Patrick D.; Gilbert, Sandra L.; Mekel-Bobrov, Nitzan; Vallender, Eric J.; Anderson, Jeffrey R.; Vaez-Azizi, Leila M.; Tishkoff, Sarah A.; Hudson, Richard R.; Lahn, Bruce T. (2005). "Microcephalin, a Gene Regulating Brain Size, Continues to Evolve Adaptively in Humans". Science. 309 (5741): 1717–20. Bibcode:2005Sci...309.1717E. doi:10.1126/science.1113722. PMID 16151009. Lay summaryThe New York Times (September 8, 2005).
  12. 12.0 12.1 Evans, Patrick D.; Mekel-Bobrov, Nitzan; Vallender, Eric J.; Hudson, Richard R.; Lahn, Bruce T. (2006). "Evidence that the adaptive allele of the brain size gene microcephalin introgressed into Homo sapiens from an archaic Homo lineage". Proceedings of the National Academy of Sciences. 103 (48): 18178–83. Bibcode:2006PNAS..10318178E. doi:10.1073/pnas.0606966103. JSTOR 30051829. PMC 1635020. PMID 17090677.
  13. Mekel-Bobrov, N.; Posthuma, D.; Gilbert, S. L.; Lind, P.; Gosso, M. F.; Luciano, M.; Harris, S. E.; Bates, T. C.; et al. (2006). "The ongoing adaptive evolution of ASPM and Microcephalin is not explained by increased intelligence". Human Molecular Genetics. 16 (6): 600–8. doi:10.1093/hmg/ddl487. PMID 17220170.
  14. http://www.plosone.org/article/info:doi/10.1371/journal.pone.0010648
  15. Dediu, Dan; Ladd, D. Robert (2007). "Linguistic tone is related to the population frequency of the adaptive haplogroups of two brain size genes, ASPM and Microcephalin". Proceedings of the National Academy of Sciences. 104 (26): 10944–9. Bibcode:2007PNAS..10410944D. doi:10.1073/pnas.0610848104. JSTOR 25436044. PMC 1904158. PMID 17537923.
  16. Pennisi, E. (2009). "NEANDERTAL GENOMICS: Tales of a Prehistoric Human Genome". Science. 323 (5916): 866–71. doi:10.1126/science.323.5916.866. PMID 19213888.
  17. Green, Richard E.; Krause, Johannes; Briggs, Adrian W.; Maricic, Tomislav; Stenzel, Udo; Kircher, Martin; Patterson, Nick; Li, Heng; et al. (2010). "A Draft Sequence of the Neandertal Genome". Science. 328 (5979): 710–22. Bibcode:2010Sci...328..710G. doi:10.1126/science.1188021. PMID 20448178.
  18. John Derbyshire (November 2005). "The specter of difference". National Review. Retrieved 2008-09-21.
  19. scientists study of brain gene sparks a backlash
  20. Balter, M. (2006). "BRUCE LAHN PROFILE: Brain Man Makes Waves with Claims of Recent Human Evolution". Science. 314 (5807): 1871–3. doi:10.1126/science.314.5807.1871. PMID 17185582.
  21. Timpson, Nicholas; Heron, Jon; Davey Smith, George; Enard, Wolfgang (2007). "Comment on Papers by Evans et al. And Mekel-Bobrov et al. On Evidence for Positive Selection of MCPH1 and ASPM". Science. 317 (5841): 1036. Bibcode:2007Sci...317.1036T. doi:10.1126/science.1141705. PMID 17717170.
  22. "Neurological assessment data for Mcph1". Wellcome Trust Sanger Institute.
  23. "Eye morphology data for Mcph1". Wellcome Trust Sanger Institute.
  24. "Salmonella infection data for Mcph1". Wellcome Trust Sanger Institute.
  25. "Citrobacter infection data for Mcph1". Wellcome Trust Sanger Institute.
  26. 26.0 26.1 26.2 26.3 Gerdin, AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 0. doi:10.1111/j.1755-3768.2010.4142.x.
  27. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  28. "International Knockout Mouse Consortium".
  29. "Mouse Genome Informatics".
  30. Skarnes, William C.; Rosen, Barry; West, Anthony P.; Koutsourakis, Manousos; Bushell, Wendy; Iyer, Vivek; Mujica, Alejandro O.; Thomas, Mark; et al. (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  31. Dolgin, Elie (2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  32. International Mouse Knockout Consortium; Collins, FS; Rossant, J; Wurst, W (2007). "A Mouse for All Reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  33. Van Der Weyden, Louise; White, Jacqueline K; Adams, David J; Logan, Darren W (2011). "The mouse genetics toolkit: Revealing function and mechanism". Genome Biology. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353.

External links