QARS: Difference between revisions
m Robot: Automated text replacement (-{{reflist}} +{{reflist|2}}, -<references /> +{{reflist|2}}, -{{WikiDoc Cardiology Network Infobox}} +) |
m Bot: HTTP→HTTPS (v470) |
||
Line 1: | Line 1: | ||
{{about||the radio enthusiasts of Qatar|Qatar Amateur Radio Society|the village in Azerbaijan|Qars}} | |||
{{ | |||
| | |||
| | |||
| | |||
| | |||
| | |||
}} | |||
{{Infobox_gene}} | |||
{{ | '''Glutaminyl-tRNA synthetase''' is an [[enzyme]] that in humans is encoded by the ''QARS'' [[gene]].<ref name="pmid8078941">{{cite journal | vauthors = Lamour V, Quevillon S, Diriong S, N'Guyen VC, Lipinski M, Mirande M | title = Evolution of the Glx-tRNA synthetase family: the glutaminyl enzyme as a case of horizontal gene transfer | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 91 | issue = 18 | pages = 8670–4 | date = Aug 1994 | pmid = 8078941 | pmc = 44668 | doi = 10.1073/pnas.91.18.8670 | bibcode = 1994PNAS...91.8670L }}</ref><ref name="pmid10393422">{{cite journal | vauthors = Durkin ME, Jäger AC, Khurana TS, Nielsen FC, Albrechtsen R, Wewer UM | title = Characterization of the human laminin beta2 chain locus (LAMB2): linkage to a gene containing a nonprocessed, transcribed LAMB2-like pseudogene (LAMB2L) and to the gene encoding glutaminyl tRNA synthetase (QARS) | journal = Cytogenetics and Cell Genetics | volume = 84 | issue = 3-4 | pages = 173–8 | date = July 1999 | pmid = 10393422 | pmc = | doi = 10.1159/000015249 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: QARS glutaminyl-tRNA synthetase| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=5859| accessdate = }}</ref> | ||
== Function == | |||
==References== | [[Aminoacyl-tRNA synthetase]]s catalyze the aminoacylation of [[tRNA]] by their cognate amino acid. Because of their central role in linking amino acids with nucleotide triplets contained in tRNAs, aminoacyl-tRNA synthetases are thought to be among the first proteins that appeared in evolution. In [[metazoan]]s, 9 aminoacyl-tRNA synthetases specific for glutamine (gln), glutamic acid (glu), and 7 other amino acids are associated within a multienzyme complex. Although present in eukaryotes, glutaminyl-tRNA synthetase (QARS) is absent from many prokaryotes, mitochondria, and chloroplasts, in which Gln-tRNA(Gln) is formed by transamidation of the misacylated Glu-tRNA(Gln). Glutaminyl-tRNA synthetase belongs to the class-I aminoacyl-tRNA synthetase family.<ref name="entrez" /> Almost all eukaryotic GlnRS enzymes possess a [[YqeY]] domain at the [[N-terminus]], which affects [[affinity (pharmacology)|affinity]] for the tRNA; in some bacterial species, such as ''[[Deinococcus radiodurans]]'', YqeY is present as a C-terminal domain with similar function.<ref name="hadd">{{cite journal | vauthors = Hadd A, Perona JJ | title = Coevolution of specificity determinants in eukaryotic glutamyl- and glutaminyl-tRNA synthetases | journal = Journal of Molecular Biology | volume = 426 | issue = 21 | pages = 3619–33 | date = Oct 2014 | pmid = 25149203 | doi = 10.1016/j.jmb.2014.08.006 }}</ref> | ||
{{reflist | |||
==Further reading== | == Interactions == | ||
QARS has been shown to [[Protein-protein interaction|interact]] with [[RARS (gene)|RARS]].<ref name=pmid10801842>{{cite journal | vauthors = Kim T, Park SG, Kim JE, Seol W, Ko YG, Kim S | title = Catalytic peptide of human glutaminyl-tRNA synthetase is essential for its assembly to the aminoacyl-tRNA synthetase complex | journal = The Journal of Biological Chemistry | volume = 275 | issue = 28 | pages = 21768–72 | date = Jul 2000 | pmid = 10801842 | doi = 10.1074/jbc.M002404200 }}</ref> | |||
== References == | |||
{{reflist}} | |||
== Further reading == | |||
{{refbegin | 2}} | {{refbegin | 2}} | ||
* {{cite journal | vauthors = Norcum MT | title = Structural analysis of the high molecular mass aminoacyl-tRNA synthetase complex. Effects of neutral salts and detergents | journal = The Journal of Biological Chemistry | volume = 266 | issue = 23 | pages = 15398–405 | date = Aug 1991 | pmid = 1651330 | doi = }} | |||
* {{cite journal | vauthors = Maruyama K, Sugano S | title = Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides | journal = Gene | volume = 138 | issue = 1-2 | pages = 171–4 | date = Jan 1994 | pmid = 8125298 | doi = 10.1016/0378-1119(94)90802-8 }} | |||
*{{cite journal | * {{cite journal | vauthors = Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S | title = Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library | journal = Gene | volume = 200 | issue = 1-2 | pages = 149–56 | date = Oct 1997 | pmid = 9373149 | doi = 10.1016/S0378-1119(97)00411-3 }} | ||
*{{cite journal | * {{cite journal | vauthors = Quevillon S, Robinson JC, Berthonneau E, Siatecka M, Mirande M | title = Macromolecular assemblage of aminoacyl-tRNA synthetases: identification of protein-protein interactions and characterization of a core protein | journal = Journal of Molecular Biology | volume = 285 | issue = 1 | pages = 183–95 | date = Jan 1999 | pmid = 9878398 | doi = 10.1006/jmbi.1998.2316 }} | ||
* {{cite journal | vauthors = Ko YG, Kang YS, Kim EK, Park SG, Kim S | title = Nucleolar localization of human methionyl-tRNA synthetase and its role in ribosomal RNA synthesis | journal = The Journal of Cell Biology | volume = 149 | issue = 3 | pages = 567–74 | date = May 2000 | pmid = 10791971 | pmc = 2174846 | doi = 10.1083/jcb.149.3.567 }} | |||
*{{cite journal | * {{cite journal | vauthors = Kim T, Park SG, Kim JE, Seol W, Ko YG, Kim S | title = Catalytic peptide of human glutaminyl-tRNA synthetase is essential for its assembly to the aminoacyl-tRNA synthetase complex | journal = The Journal of Biological Chemistry | volume = 275 | issue = 28 | pages = 21768–72 | date = Jul 2000 | pmid = 10801842 | doi = 10.1074/jbc.M002404200 }} | ||
*{{cite journal | * {{cite journal | vauthors = Kang J, Kim T, Ko YG, Rho SB, Park SG, Kim MJ, Kwon HJ, Kim S | title = Heat shock protein 90 mediates protein-protein interactions between human aminoacyl-tRNA synthetases | journal = The Journal of Biological Chemistry | volume = 275 | issue = 41 | pages = 31682–8 | date = Oct 2000 | pmid = 10913161 | doi = 10.1074/jbc.M909965199 }} | ||
*{{cite journal | * {{cite journal | vauthors = Ko YG, Kim EY, Kim T, Park H, Park HS, Choi EJ, Kim S | title = Glutamine-dependent antiapoptotic interaction of human glutaminyl-tRNA synthetase with apoptosis signal-regulating kinase 1 | journal = The Journal of Biological Chemistry | volume = 276 | issue = 8 | pages = 6030–6 | date = Feb 2001 | pmid = 11096076 | doi = 10.1074/jbc.M006189200 }} | ||
* {{cite journal | vauthors = Lehner B, Semple JI, Brown SE, Counsell D, Campbell RD, Sanderson CM | title = Analysis of a high-throughput yeast two-hybrid system and its use to predict the function of intracellular proteins encoded within the human MHC class III region | journal = Genomics | volume = 83 | issue = 1 | pages = 153–67 | date = Jan 2004 | pmid = 14667819 | doi = 10.1016/S0888-7543(03)00235-0 }} | |||
*{{cite journal | * {{cite journal | vauthors = Colland F, Jacq X, Trouplin V, Mougin C, Groizeleau C, Hamburger A, Meil A, Wojcik J, Legrain P, Gauthier JM | title = Functional proteomics mapping of a human signaling pathway | journal = Genome Research | volume = 14 | issue = 7 | pages = 1324–32 | date = Jul 2004 | pmid = 15231748 | pmc = 442148 | doi = 10.1101/gr.2334104 }} | ||
*{{cite journal | * {{cite journal | vauthors = Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha XM, Polakiewicz RD, Comb MJ | title = Immunoaffinity profiling of tyrosine phosphorylation in cancer cells | journal = Nature Biotechnology | volume = 23 | issue = 1 | pages = 94–101 | date = Jan 2005 | pmid = 15592455 | doi = 10.1038/nbt1046 }} | ||
*{{cite journal | * {{cite journal | vauthors = Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M | title = Towards a proteome-scale map of the human protein-protein interaction network | journal = Nature | volume = 437 | issue = 7062 | pages = 1173–8 | date = Oct 2005 | pmid = 16189514 | doi = 10.1038/nature04209 }} | ||
*{{cite journal | |||
*{{cite journal | |||
*{{cite journal | |||
*{{cite journal | |||
}} | |||
{{refend}} | {{refend}} | ||
{{ | {{gene-3-stub}} | ||
Revision as of 02:17, 27 October 2017
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
Glutaminyl-tRNA synthetase is an enzyme that in humans is encoded by the QARS gene.[1][2][3]
Function
Aminoacyl-tRNA synthetases catalyze the aminoacylation of tRNA by their cognate amino acid. Because of their central role in linking amino acids with nucleotide triplets contained in tRNAs, aminoacyl-tRNA synthetases are thought to be among the first proteins that appeared in evolution. In metazoans, 9 aminoacyl-tRNA synthetases specific for glutamine (gln), glutamic acid (glu), and 7 other amino acids are associated within a multienzyme complex. Although present in eukaryotes, glutaminyl-tRNA synthetase (QARS) is absent from many prokaryotes, mitochondria, and chloroplasts, in which Gln-tRNA(Gln) is formed by transamidation of the misacylated Glu-tRNA(Gln). Glutaminyl-tRNA synthetase belongs to the class-I aminoacyl-tRNA synthetase family.[3] Almost all eukaryotic GlnRS enzymes possess a YqeY domain at the N-terminus, which affects affinity for the tRNA; in some bacterial species, such as Deinococcus radiodurans, YqeY is present as a C-terminal domain with similar function.[4]
Interactions
QARS has been shown to interact with RARS.[5]
References
- ↑ Lamour V, Quevillon S, Diriong S, N'Guyen VC, Lipinski M, Mirande M (Aug 1994). "Evolution of the Glx-tRNA synthetase family: the glutaminyl enzyme as a case of horizontal gene transfer". Proceedings of the National Academy of Sciences of the United States of America. 91 (18): 8670–4. Bibcode:1994PNAS...91.8670L. doi:10.1073/pnas.91.18.8670. PMC 44668. PMID 8078941.
- ↑ Durkin ME, Jäger AC, Khurana TS, Nielsen FC, Albrechtsen R, Wewer UM (July 1999). "Characterization of the human laminin beta2 chain locus (LAMB2): linkage to a gene containing a nonprocessed, transcribed LAMB2-like pseudogene (LAMB2L) and to the gene encoding glutaminyl tRNA synthetase (QARS)". Cytogenetics and Cell Genetics. 84 (3–4): 173–8. doi:10.1159/000015249. PMID 10393422.
- ↑ 3.0 3.1 "Entrez Gene: QARS glutaminyl-tRNA synthetase".
- ↑ Hadd A, Perona JJ (Oct 2014). "Coevolution of specificity determinants in eukaryotic glutamyl- and glutaminyl-tRNA synthetases". Journal of Molecular Biology. 426 (21): 3619–33. doi:10.1016/j.jmb.2014.08.006. PMID 25149203.
- ↑ Kim T, Park SG, Kim JE, Seol W, Ko YG, Kim S (Jul 2000). "Catalytic peptide of human glutaminyl-tRNA synthetase is essential for its assembly to the aminoacyl-tRNA synthetase complex". The Journal of Biological Chemistry. 275 (28): 21768–72. doi:10.1074/jbc.M002404200. PMID 10801842.
Further reading
- Norcum MT (Aug 1991). "Structural analysis of the high molecular mass aminoacyl-tRNA synthetase complex. Effects of neutral salts and detergents". The Journal of Biological Chemistry. 266 (23): 15398–405. PMID 1651330.
- Maruyama K, Sugano S (Jan 1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene. 138 (1–2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID 8125298.
- Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S (Oct 1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library". Gene. 200 (1–2): 149–56. doi:10.1016/S0378-1119(97)00411-3. PMID 9373149.
- Quevillon S, Robinson JC, Berthonneau E, Siatecka M, Mirande M (Jan 1999). "Macromolecular assemblage of aminoacyl-tRNA synthetases: identification of protein-protein interactions and characterization of a core protein". Journal of Molecular Biology. 285 (1): 183–95. doi:10.1006/jmbi.1998.2316. PMID 9878398.
- Ko YG, Kang YS, Kim EK, Park SG, Kim S (May 2000). "Nucleolar localization of human methionyl-tRNA synthetase and its role in ribosomal RNA synthesis". The Journal of Cell Biology. 149 (3): 567–74. doi:10.1083/jcb.149.3.567. PMC 2174846. PMID 10791971.
- Kim T, Park SG, Kim JE, Seol W, Ko YG, Kim S (Jul 2000). "Catalytic peptide of human glutaminyl-tRNA synthetase is essential for its assembly to the aminoacyl-tRNA synthetase complex". The Journal of Biological Chemistry. 275 (28): 21768–72. doi:10.1074/jbc.M002404200. PMID 10801842.
- Kang J, Kim T, Ko YG, Rho SB, Park SG, Kim MJ, Kwon HJ, Kim S (Oct 2000). "Heat shock protein 90 mediates protein-protein interactions between human aminoacyl-tRNA synthetases". The Journal of Biological Chemistry. 275 (41): 31682–8. doi:10.1074/jbc.M909965199. PMID 10913161.
- Ko YG, Kim EY, Kim T, Park H, Park HS, Choi EJ, Kim S (Feb 2001). "Glutamine-dependent antiapoptotic interaction of human glutaminyl-tRNA synthetase with apoptosis signal-regulating kinase 1". The Journal of Biological Chemistry. 276 (8): 6030–6. doi:10.1074/jbc.M006189200. PMID 11096076.
- Lehner B, Semple JI, Brown SE, Counsell D, Campbell RD, Sanderson CM (Jan 2004). "Analysis of a high-throughput yeast two-hybrid system and its use to predict the function of intracellular proteins encoded within the human MHC class III region". Genomics. 83 (1): 153–67. doi:10.1016/S0888-7543(03)00235-0. PMID 14667819.
- Colland F, Jacq X, Trouplin V, Mougin C, Groizeleau C, Hamburger A, Meil A, Wojcik J, Legrain P, Gauthier JM (Jul 2004). "Functional proteomics mapping of a human signaling pathway". Genome Research. 14 (7): 1324–32. doi:10.1101/gr.2334104. PMC 442148. PMID 15231748.
- Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha XM, Polakiewicz RD, Comb MJ (Jan 2005). "Immunoaffinity profiling of tyrosine phosphorylation in cancer cells". Nature Biotechnology. 23 (1): 94–101. doi:10.1038/nbt1046. PMID 15592455.
- Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (Oct 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–8. doi:10.1038/nature04209. PMID 16189514.
This article on a gene on human chromosome 3 is a stub. You can help Wikipedia by expanding it. |