SETD2: Difference between revisions

Jump to navigation Jump to search
WikiBot (talk | contribs)
m Robot: Automated text replacement (-{{reflist}} +{{reflist|2}}, -<references /> +{{reflist|2}}, -{{WikiDoc Cardiology Network Infobox}} +)
 
 
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''SET domain containing 2''' is an [[enzyme]] that in humans is encoded by the ''SETD2'' [[gene]].<ref name="pmid16118227">{{cite journal | vauthors = Sun XJ, Wei J, Wu XY, Hu M, Wang L, Wang HH, Zhang QH, Chen SJ, Huang QH, Chen Z | title = Identification and characterization of a novel human histone H3 lysine 36-specific methyltransferase | journal = J Biol Chem | volume = 280 | issue = 42 | pages = 35261–71 |date=Oct 2005 | pmid = 16118227 | pmc =  | doi = 10.1074/jbc.M504012200 }}</ref><ref name="pmid11461154">{{cite journal | vauthors = Rega S, Stiewe T, Chang DI, Pollmeier B, Esche H, Bardenheuer W, Marquitan G, Putzer BM | title = Identification of the full-length huntingtin- interacting protein p231HBP/HYPB as a DNA-binding factor | journal = Mol Cell Neurosci | volume = 18 | issue = 1 | pages = 68–79 |date=Jul 2001 | pmid = 11461154 | pmc =  | doi = 10.1006/mcne.2001.1004 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: SETD2 SET domain containing 2| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=29072| accessdate = }}</ref>
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}


<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
== Function ==
{{GNF_Protein_box
SETD2 protein is a [[histone methyltransferase]] that is specific for lysine-36 of histone H3, and methylation of this residue is associated with active [[chromatin]]. This protein also contains a novel transcriptional activation domain and has been found associated with hyperphosphorylated [[RNA polymerase II]].<ref name="entrez" />
| image = PBB_Protein_SETD2_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 2a7o.
| PDB = {{PDB2|2a7o}}
| Name = SET domain containing 2
| HGNCid = 18420
| Symbol = SETD2
| AltSymbols =; FLJ16420; FLJ22472; FLJ23184; FLJ45883; HIF-1; HSPC069; HYPB; KIAA1732
| OMIM = 
| ECnumber = 
| Homologene = 56493
| MGIid = 1918177
| GeneAtlas_image1 = PBB_GE_SETD2_212493_s_at_tn.png
| GeneAtlas_image2 = PBB_GE_SETD2_215038_s_at_tn.png
| GeneAtlas_image3 = PBB_GE_SETD2_220946_s_at_tn.png
| Function = {{GNF_GO|id=GO:0003677 |text = DNA binding}} {{GNF_GO|id=GO:0008168 |text = methyltransferase activity}} {{GNF_GO|id=GO:0016740 |text = transferase activity}} {{GNF_GO|id=GO:0018024 |text = histone-lysine N-methyltransferase activity}}
| Component = {{GNF_GO|id=GO:0005634 |text = nucleus}}
| Process = {{GNF_GO|id=GO:0006350 |text = transcription}} {{GNF_GO|id=GO:0006355 |text = regulation of transcription, DNA-dependent}} {{GNF_GO|id=GO:0016568 |text = chromatin modification}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 29072
    | Hs_Ensembl = ENSG00000181555
    | Hs_RefseqProtein = NP_054878
    | Hs_RefseqmRNA = NM_014159
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = 3
    | Hs_GenLoc_start = 47032926
    | Hs_GenLoc_end = 47180461
    | Hs_Uniprot = Q9BYW2
    | Mm_EntrezGene = 235626
    | Mm_Ensembl = ENSMUSG00000044791
    | Mm_RefseqmRNA = XM_895138
    | Mm_RefseqProtein = XP_900231
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 9
    | Mm_GenLoc_start = 110418504
    | Mm_GenLoc_end = 110463417
    | Mm_Uniprot = 
  }}
}}
'''SET domain containing 2''', also known as '''SETD2''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: SETD2 SET domain containing 2| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=29072| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
== Clinical significance ==
{{PBB_Summary
The SETD2 gene is located on the short arm of chromosome 3 and has been shown to play a tumour suppressor role in human cancer.<ref name="pmid19698110">{{cite journal | vauthors = Al Sarakbi W, Sasi W, Jiang WG, Roberts T, Newbold RF, Mokbel K | author6-link = kefah Mokbel | title = The mRNA expression of SETD2 in human breast cancer: correlation with clinico-pathological parameters | journal = BMC Cancer | volume = 9 | issue = | pages = 290 | year = 2009 | pmid = 19698110 | pmc = 3087337 | doi = 10.1186/1471-2407-9-290 }}</ref>
| section_title =  
| summary_text = Huntington's disease (HD), a neurodegenerative disorder characterized by loss of striatal neurons, is caused by an expansion of a polyglutamine tract in the HD protein huntingtin. This gene encodes a protein belonging to a class of huntingtin interacting proteins characterized by WW motifs.<ref name="entrez">{{cite web | title = Entrez Gene: SETD2 SET domain containing 2| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=29072| accessdate = }}</ref>
}}


==References==
== Interactions ==
{{reflist|2}}
 
==Further reading==
SETD2 has been shown to [[Protein-protein interaction|interact]] with [[Huntingtin]].<ref name="pmid9700202">{{cite journal | vauthors = Faber PW, Barnes GT, Srinidhi J, Chen J, Gusella JF, MacDonald ME | title = Huntingtin interacts with a family of WW domain proteins | journal = Hum. Mol. Genet. | volume = 7 | issue = 9 | pages = 1463–74 |date=September 1998 | pmid = 9700202 | doi = 10.1093/hmg/7.9.1463 }}</ref> [[Huntington's disease]] (HD), a neurodegenerative disorder characterized by loss of [[striatum|striatal]] neurons, is caused by an expansion of a [[polyglutamine tract]] in the HD protein huntingtin. SETD2 belongs to a class of huntingtin interacting proteins characterized by [[WW domain|WW motifs]].<ref name="entrez" />
 
== References ==
{{reflist}}
 
== Further reading ==
{{refbegin | 2}}
{{refbegin | 2}}
{{PBB_Further_reading
*{{cite journal   |vauthors=Faber PW, Barnes GT, Srinidhi J, etal |title=Huntingtin interacts with a family of WW domain proteins |journal=Hum. Mol. Genet. |volume=7 |issue= 9 |pages= 1463–74 |year= 1998 |pmid= 9700202 |doi=10.1093/hmg/7.9.1463 }}
| citations =
*{{cite journal   |vauthors=Passani LA, Bedford MT, Faber PW, etal |title=Huntingtin's WW domain partners in Huntington's disease post-mortem brain fulfill genetic criteria for direct involvement in Huntington's disease pathogenesis |journal=Hum. Mol. Genet. |volume=9 |issue= 14 |pages= 2175–82 |year= 2000 |pmid= 10958656 |doi=10.1093/hmg/9.14.2175 }}
*{{cite journal | author=Faber PW, Barnes GT, Srinidhi J, ''et al.'' |title=Huntingtin interacts with a family of WW domain proteins. |journal=Hum. Mol. Genet. |volume=7 |issue= 9 |pages= 1463-74 |year= 1998 |pmid= 9700202 |doi=  }}
*{{cite journal   |vauthors=Zhang QH, Ye M, Wu XY, etal |title=Cloning and functional analysis of cDNAs with open reading frames for 300 previously undefined genes expressed in CD34+ hematopoietic stem/progenitor cells |journal=Genome Res. |volume=10 |issue= 10 |pages= 1546–60 |year= 2001 |pmid= 11042152 |doi=10.1101/gr.140200  | pmc=310934 }}
*{{cite journal | author=Passani LA, Bedford MT, Faber PW, ''et al.'' |title=Huntingtin's WW domain partners in Huntington's disease post-mortem brain fulfill genetic criteria for direct involvement in Huntington's disease pathogenesis. |journal=Hum. Mol. Genet. |volume=9 |issue= 14 |pages= 2175-82 |year= 2000 |pmid= 10958656 |doi=  }}
*{{cite journal   |vauthors=Nagase T, Kikuno R, Hattori A, etal |title=Prediction of the coding sequences of unidentified human genes. XIX. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro |journal=DNA Res. |volume=7 |issue= 6 |pages= 347–55 |year= 2001 |pmid= 11214970 |doi=10.1093/dnares/7.6.347  }}
*{{cite journal | author=Zhang QH, Ye M, Wu XY, ''et al.'' |title=Cloning and functional analysis of cDNAs with open reading frames for 300 previously undefined genes expressed in CD34+ hematopoietic stem/progenitor cells. |journal=Genome Res. |volume=10 |issue= 10 |pages= 1546-60 |year= 2001 |pmid= 11042152 |doi=  }}
*{{cite journal   |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 }}
*{{cite journal | author=Nagase T, Kikuno R, Hattori A, ''et al.'' |title=Prediction of the coding sequences of unidentified human genes. XIX. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. |journal=DNA Res. |volume=7 |issue= 6 |pages= 347-55 |year= 2001 |pmid= 11214970 |doi= }}
*{{cite journal   |vauthors=Ota T, Suzuki Y, Nishikawa T, etal |title=Complete sequencing and characterization of 21,243 full-length human cDNAs |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40–5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 }}
*{{cite journal  | author=Rega S, Stiewe T, Chang DI, ''et al.'' |title=Identification of the full-length huntingtin- interacting protein p231HBP/HYPB as a DNA-binding factor. |journal=Mol. Cell. Neurosci. |volume=18 |issue= 1 |pages= 68-79 |year= 2001 |pmid= 11461154 |doi= 10.1006/mcne.2001.1004 }}
*{{cite journal   |vauthors=Beausoleil SA, Jedrychowski M, Schwartz D, etal |title=Large-scale characterization of HeLa cell nuclear phosphoproteins |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=101 |issue= 33 |pages= 12130–5 |year= 2004 |pmid= 15302935 |doi= 10.1073/pnas.0404720101 | pmc=514446 }}
*{{cite journal | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899-903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}
*{{cite journal   |vauthors=Gerhard DS, Wagner L, Feingold EA, etal |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC) |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504  | pmc=528928 }}
*{{cite journal | author=Ota T, Suzuki Y, Nishikawa T, ''et al.'' |title=Complete sequencing and characterization of 21,243 full-length human cDNAs. |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40-5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 }}
*{{cite journal   |vauthors=Li M, Phatnani HP, Guan Z, etal |title=Solution structure of the Set2-Rpb1 interacting domain of human Set2 and its interaction with the hyperphosphorylated C-terminal domain of Rpb1 |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=102 |issue= 49 |pages= 17636–41 |year= 2006 |pmid= 16314571 |doi= 10.1073/pnas.0506350102 | pmc=1308900 }}
*{{cite journal | author=Beausoleil SA, Jedrychowski M, Schwartz D, ''et al.'' |title=Large-scale characterization of HeLa cell nuclear phosphoproteins. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=101 |issue= 33 |pages= 12130-5 |year= 2004 |pmid= 15302935 |doi= 10.1073/pnas.0404720101 }}
*{{cite journal   |vauthors=Lim J, Hao T, Shaw C, etal |title=A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration |journal=Cell |volume=125 |issue= 4 |pages= 801–14 |year= 2006 |pmid= 16713569 |doi= 10.1016/j.cell.2006.03.032 }}
*{{cite journal | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121-7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}
*{{cite journal   |vauthors=Olsen JV, Blagoev B, Gnad F, etal |title=Global, in vivo, and site-specific phosphorylation dynamics in signaling networks |journal=Cell |volume=127 |issue= 3 |pages= 635–48 |year= 2006 |pmid= 17081983 |doi= 10.1016/j.cell.2006.09.026 }}
*{{cite journal | author=Sun XJ, Wei J, Wu XY, ''et al.'' |title=Identification and characterization of a novel human histone H3 lysine 36-specific methyltransferase. |journal=J. Biol. Chem. |volume=280 |issue= 42 |pages= 35261-71 |year= 2005 |pmid= 16118227 |doi= 10.1074/jbc.M504012200 }}
*{{cite journal | author=Li M, Phatnani HP, Guan Z, ''et al.'' |title=Solution structure of the Set2-Rpb1 interacting domain of human Set2 and its interaction with the hyperphosphorylated C-terminal domain of Rpb1. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=102 |issue= 49 |pages= 17636-41 |year= 2006 |pmid= 16314571 |doi= 10.1073/pnas.0506350102 }}
*{{cite journal | author=Lim J, Hao T, Shaw C, ''et al.'' |title=A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. |journal=Cell |volume=125 |issue= 4 |pages= 801-14 |year= 2006 |pmid= 16713569 |doi= 10.1016/j.cell.2006.03.032 }}
*{{cite journal | author=Olsen JV, Blagoev B, Gnad F, ''et al.'' |title=Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. |journal=Cell |volume=127 |issue= 3 |pages= 635-48 |year= 2006 |pmid= 17081983 |doi= 10.1016/j.cell.2006.09.026 }}
}}
{{refend}}
{{refend}}
{{PDB Gallery|geneid=29072}}


{{protein-stub}}
{{gene-3-stub}}
{{WikiDoc Sources}}

Latest revision as of 06:10, 11 September 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

SET domain containing 2 is an enzyme that in humans is encoded by the SETD2 gene.[1][2][3]

Function

SETD2 protein is a histone methyltransferase that is specific for lysine-36 of histone H3, and methylation of this residue is associated with active chromatin. This protein also contains a novel transcriptional activation domain and has been found associated with hyperphosphorylated RNA polymerase II.[3]

Clinical significance

The SETD2 gene is located on the short arm of chromosome 3 and has been shown to play a tumour suppressor role in human cancer.[4]

Interactions

SETD2 has been shown to interact with Huntingtin.[5] Huntington's disease (HD), a neurodegenerative disorder characterized by loss of striatal neurons, is caused by an expansion of a polyglutamine tract in the HD protein huntingtin. SETD2 belongs to a class of huntingtin interacting proteins characterized by WW motifs.[3]

References

  1. Sun XJ, Wei J, Wu XY, Hu M, Wang L, Wang HH, Zhang QH, Chen SJ, Huang QH, Chen Z (Oct 2005). "Identification and characterization of a novel human histone H3 lysine 36-specific methyltransferase". J Biol Chem. 280 (42): 35261–71. doi:10.1074/jbc.M504012200. PMID 16118227.
  2. Rega S, Stiewe T, Chang DI, Pollmeier B, Esche H, Bardenheuer W, Marquitan G, Putzer BM (Jul 2001). "Identification of the full-length huntingtin- interacting protein p231HBP/HYPB as a DNA-binding factor". Mol Cell Neurosci. 18 (1): 68–79. doi:10.1006/mcne.2001.1004. PMID 11461154.
  3. 3.0 3.1 3.2 "Entrez Gene: SETD2 SET domain containing 2".
  4. Al Sarakbi W, Sasi W, Jiang WG, Roberts T, Newbold RF, Mokbel K (2009). "The mRNA expression of SETD2 in human breast cancer: correlation with clinico-pathological parameters". BMC Cancer. 9: 290. doi:10.1186/1471-2407-9-290. PMC 3087337. PMID 19698110.
  5. Faber PW, Barnes GT, Srinidhi J, Chen J, Gusella JF, MacDonald ME (September 1998). "Huntingtin interacts with a family of WW domain proteins". Hum. Mol. Genet. 7 (9): 1463–74. doi:10.1093/hmg/7.9.1463. PMID 9700202.

Further reading