SETDB1: Difference between revisions

Jump to navigation Jump to search
WikiBot (talk | contribs)
m Robot: Automated text replacement (-{{reflist}} +{{reflist|2}}, -<references /> +{{reflist|2}}, -{{WikiDoc Cardiology Network Infobox}} +)
 
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''Histone-lysine N-methyltransferase SETDB1''' is an [[enzyme]] that in humans is encoded by the ''SETDB1'' [[gene]].<ref name="pmid10343109">{{cite journal | vauthors = Harte PJ, Wu W, Carrasquillo MM, Matera AG | title = Assignment of a novel bifurcated SET domain gene, SETDB1, to human chromosome band 1q21 by in situ hybridization and radiation hybrids | journal = Cytogenet. Cell Genet. | volume = 84 | issue = 1-2 | pages = 83–6  | date = June 1999 | pmid = 10343109 | pmc =  | doi = 10.1159/000015220 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: SETDB1 SET domain, bifurcated 1| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=9869| accessdate = }}</ref>
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}


<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
== Function ==
{{GNF_Protein_box
| image =
| image_source =
| PDB =
| Name = SET domain, bifurcated 1
| HGNCid = 10761
| Symbol = SETDB1
| AltSymbols =; ESET; KG1T; KIAA0067
| OMIM = 604396
| ECnumber = 
| Homologene = 32157
| MGIid = 1934229
| GeneAtlas_image1 = PBB_GE_SETDB1_203155_at_tn.png
| GeneAtlas_image2 = PBB_GE_SETDB1_214197_s_at_tn.png
| Function = {{GNF_GO|id=GO:0003677 |text = DNA binding}} {{GNF_GO|id=GO:0005515 |text = protein binding}} {{GNF_GO|id=GO:0008168 |text = methyltransferase activity}} {{GNF_GO|id=GO:0008270 |text = zinc ion binding}} {{GNF_GO|id=GO:0016740 |text = transferase activity}} {{GNF_GO|id=GO:0018024 |text = histone-lysine N-methyltransferase activity}}
| Component = {{GNF_GO|id=GO:0005634 |text = nucleus}}
| Process = {{GNF_GO|id=GO:0001833 |text = inner cell mass cell proliferation}} {{GNF_GO|id=GO:0016568 |text = chromatin modification}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 9869
    | Hs_Ensembl = ENSG00000143379
    | Hs_RefseqProtein = NP_036564
    | Hs_RefseqmRNA = NM_012432
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = 1
    | Hs_GenLoc_start = 149165512
    | Hs_GenLoc_end = 149203837
    | Hs_Uniprot = Q15047
    | Mm_EntrezGene = 84505
    | Mm_Ensembl = ENSMUSG00000015697
    | Mm_RefseqmRNA = NM_018877
    | Mm_RefseqProtein = NP_061365
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 3
    | Mm_GenLoc_start = 95408930
    | Mm_GenLoc_end = 95442562
    | Mm_Uniprot = Q6AXH8
  }}
}}
'''SET domain, bifurcated 1''', also known as '''SETDB1''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: SETDB1 SET domain, bifurcated 1| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=9869| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
The [[SET domain]] is a highly conserved, approximately 150-amino acid motif implicated in the modulation of [[chromatin]] structure. It was originally identified as part of a larger conserved region present in the ''[[Drosophila]]'' Trithorax protein and was subsequently identified in the ''Drosophila'' Su(var)3-9 and 'Enhancer of zeste' proteins, from which the acronym SET is derived. Studies have suggested that the SET domain may be a signature of proteins that modulate transcriptionally active or repressed chromatin states through chromatin remodeling activities.<ref name="entrez" />
{{PBB_Summary
| section_title =
| summary_text = The SET domain is a highly conserved, approximately 150-amino acid motif implicated in the modulation of chromatin structure. It was originally identified as part of a larger conserved region present in the Drosophila Trithorax protein and was subsequently identified in the Drosophila Su(var)3-9 and 'Enhancer of zeste' proteins, from which the acronym SET is derived. Studies have suggested that the SET domain may be a signature of proteins that modulate transcriptionally active or repressed chromatin states through chromatin remodeling activities.[supplied by OMIM]<ref name="entrez">{{cite web | title = Entrez Gene: SETDB1 SET domain, bifurcated 1| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=9869| accessdate = }}</ref>
}}


==References==
==Model organisms==
{{reflist|2}}
 
==Further reading==
{| class="wikitable sortable collapsible collapsed" border="1" cellpadding="2" style="float: right;" |
|+ ''Setdb1'' knockout mouse phenotype
|-
! Characteristic!! Phenotype
 
|-
| [[Homozygote]] viability || bgcolor="#C40000"|Abnormal
|-
| [[Recessive]] lethal study || bgcolor="#C40000"|Abnormal
|-
| Homozygous Fertility || bgcolor="#488ED3"|Normal
|-
| Body weight || bgcolor="#488ED3"|Normal
|-
| [[Open Field (animal test)|Anxiety]] || bgcolor="#488ED3"|Normal
|-
| Neurological assessment || bgcolor="#488ED3"|Normal
|-
| Grip strength || bgcolor="#488ED3"|Normal
|-
| [[Hot plate test|Hot plate]] || bgcolor="#488ED3"|Normal
|-
| [[Dysmorphology]] || bgcolor="#488ED3"|Normal
|-
| [[Indirect calorimetry]] || bgcolor="#488ED3"|Normal
|-
| [[Glucose tolerance test]] || bgcolor="#488ED3"|Normal
|-
| [[Auditory brainstem response]] || bgcolor="#488ED3"|Normal
|-
| [[Dual-energy X-ray absorptiometry|DEXA]] || bgcolor="#488ED3"|Normal
|-
| [[Radiography]] || bgcolor="#488ED3"|Normal
|-
| Body temperature || bgcolor="#488ED3"|Normal
|-
| Eye morphology || bgcolor="#488ED3"|Normal
|-
| [[Clinical chemistry]] || bgcolor="#488ED3"|Normal
|-
| [[Haematology]] || bgcolor="#488ED3"|Normal
|-
| [[Peripheral blood lymphocyte]]s || bgcolor="#C40000"|Abnormal<ref name="Peripheral blood lymphocytes">{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MAIT/peripheral-blood-lymphocytes/ |title=Peripheral blood lymphocytes data for Setdb1 |publisher=Wellcome Trust Sanger Institute}}</ref>
|-
| [[Micronucleus test]] || bgcolor="#488ED3"|Normal
|-
| Heart weight || bgcolor="#488ED3"|Normal
|-
| Tail epidermis wholemount || bgcolor="#488ED3"|Normal
|-
| Skin Histopathology || bgcolor="#488ED3"|Normal
|-
| Brain histopathology || bgcolor="#488ED3"|Normal
|-
| MicroCT & Quantitative Faxitron || bgcolor="#C40000"|Abnormal
|-
| ''[[Salmonella]]'' infection || bgcolor="#488ED3"|Normal<ref name="''Salmonella'' infection">{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MAIT/salmonella-challenge/ |title=''Salmonella'' infection data for Setdb1 |publisher=Wellcome Trust Sanger Institute}}</ref>
|-
| ''[[Citrobacter]]'' infection || bgcolor="#488ED3"|Normal<ref name="''Citrobacter'' infection">{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MAIT/citrobacter-challenge/ |title=''Citrobacter'' infection data for Setdb1 |publisher=Wellcome Trust Sanger Institute}}</ref>
|-
| colspan=2; style="text-align: center;" | All tests and analysis from<ref name="mgp_reference">{{cite journal | doi = 10.1111/j.1755-3768.2010.4142.x | title = The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice | year = 2010 | author = Gerdin AK | journal = Acta Ophthalmologica | volume = 88 | pages =  925–7 }}</ref><ref>[http://www.sanger.ac.uk/mouseportal/ Mouse Resources Portal], Wellcome Trust Sanger Institute.</ref>
|}
[[Model organism]]s have been used in the study of SETDB1 function. A conditional [[knockout mouse]] line, called ''Setdb1<sup>tm1a(EUCOMM)Wtsi</sup>''<ref name="allele_ref">{{cite web |url=http://www.knockoutmouse.org/martsearch/search?query=Setdb1 |title=International Knockout Mouse Consortium}}</ref><ref name="mgi_allele_ref">{{cite web |url=http://www.informatics.jax.org/searchtool/Search.do?query=MGI:4432424 |title=Mouse Genome Informatics}}</ref> was generated as part of the [[International Knockout Mouse Consortium]] program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.<ref name="pmid21677750">{{cite journal | vauthors = Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A | title = A conditional knockout resource for the genome-wide study of mouse gene function | journal = Nature | volume = 474 | issue = 7351 | pages = 337–42 | year = 2011 | pmid = 21677750 | pmc = 3572410 | doi = 10.1038/nature10163 }}</ref><ref name="mouse_library">{{cite journal | vauthors = Dolgin E | title = Mouse library set to be knockout | journal = Nature | volume = 474 | issue = 7351 | pages = 262–3 | year = 2011 | pmid = 21677718 | doi = 10.1038/474262a }}</ref><ref name="mouse_for_all_reasons">{{cite journal | vauthors = Collins FS, Rossant J, Wurst W | title = A mouse for all reasons | journal = Cell | volume = 128 | issue = 1 | pages = 9–13 | year = 2007 | pmid = 17218247 | doi = 10.1016/j.cell.2006.12.018 }}</ref>
 
Male and female animals underwent a standardized [[phenotypic screen]] to determine the effects of deletion.<ref name="mgp_reference" /><ref name="pmid21722353">{{cite journal | vauthors = van der Weyden L, White JK, Adams DJ, Logan DW | title = The mouse genetics toolkit: revealing function and mechanism | journal = Genome Biol. | volume = 12 | issue = 6 | pages = 224 | year = 2011 | pmid = 21722353 | pmc = 3218837 | doi = 10.1186/gb-2011-12-6-224 }}</ref>  Twenty seven tests were carried out on [[mutant]] mice and four significant abnormalities were observed.<ref name="mgp_reference" /> No [[homozygous]] [[mutant]] embryos were identified during gestation, and therefore none survived until [[weaning]]. The remaining tests were carried out on [[heterozygous]] mutant adult mice and two significant abnormalities were observed. Females had abnormal peripheral blood lymphocytes data and both sexes displayed increased bone strength and mineral content.<ref name="mgp_reference" />
 
== Interactions ==
 
SETDB1 has been shown to [[Protein-protein interaction|interact]] with [[TRIM28]].<ref name="pmid11959841">{{cite journal | vauthors = Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher FJ | title = SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins | journal = Genes Dev. | volume = 16 | issue = 8 | pages = 919–32  | date = April 2002 | pmid = 11959841 | pmc = 152359 | doi = 10.1101/gad.973302 }}</ref>>
 
== References ==
{{reflist}}
 
== Further reading ==
{{refbegin | 2}}
{{refbegin | 2}}
{{PBB_Further_reading
* {{cite journal | vauthors = Nomura N, Nagase T, Miyajima N, Sazuka T, Tanaka A, Sato S, Seki N, Kawarabayasi Y, Ishikawa K, Tabata S | title = Prediction of the coding sequences of unidentified human genes. II. The coding sequences of 40 new genes (KIAA0041-KIAA0080) deduced by analysis of cDNA clones from human cell line KG-1 | journal = DNA Res. | volume = 1 | issue = 5 | pages = 223–9 | year = 1994 | pmid = 7584044 | doi = 10.1093/dnares/1.5.223 }}
| citations =
* {{cite journal | vauthors = Yang L, Xia L, Wu DY, Wang H, Chansky HA, Schubach WH, Hickstein DD, Zhang Y | title = Molecular cloning of ESET, a novel histone H3-specific methyltransferase that interacts with ERG transcription factor | journal = Oncogene | volume = 21 | issue = 1 | pages = 148–52 | year = 2002 | pmid = 11791185 | doi = 10.1038/sj.onc.1204998 }}
*{{cite journal | author=Nomura N, Nagase T, Miyajima N, ''et al.'' |title=Prediction of the coding sequences of unidentified human genes. II. The coding sequences of 40 new genes (KIAA0041-KIAA0080) deduced by analysis of cDNA clones from human cell line KG-1. |journal=DNA Res. |volume=1 |issue= 5 |pages= 223-9 |year= 1995 |pmid= 7584044 |doi= }}
* {{cite journal | vauthors = Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher FJ | title = SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins | journal = Genes Dev. | volume = 16 | issue = 8 | pages = 919–32 | year = 2002 | pmid = 11959841 | pmc = 152359 | doi = 10.1101/gad.973302 }}
*{{cite journal | author=Harte PJ, Wu W, Carrasquillo MM, Matera AG |title=Assignment of a novel bifurcated SET domain gene, SETDB1, to human chromosome band 1q21 by in situ hybridization and radiation hybrids. |journal=Cytogenet. Cell Genet. |volume=84 |issue= 1-2 |pages= 83-6 |year= 1999 |pmid= 10343109 |doi= }}
* {{cite journal | vauthors = Yang L, Mei Q, Zielinska-Kwiatkowska A, Matsui Y, Blackburn ML, Benedetti D, Krumm AA, Taborsky GJ, Chansky HA | title = An ERG (ets-related gene)-associated histone methyltransferase interacts with histone deacetylases 1/2 and transcription co-repressors mSin3A/B | journal = Biochem. J. | volume = 369 | issue = Pt 3 | pages = 651–7 | year = 2003 | pmid = 12398767 | pmc = 1223118 | doi = 10.1042/BJ20020854 }}
*{{cite journal | author=Yang L, Xia L, Wu DY, ''et al.'' |title=Molecular cloning of ESET, a novel histone H3-specific methyltransferase that interacts with ERG transcription factor. |journal=Oncogene |volume=21 |issue= 1 |pages= 148-52 |year= 2002 |pmid= 11791185 |doi= 10.1038/sj.onc.1204998 }}
* {{cite journal | vauthors = Nakayama M, Kikuno R, Ohara O | title = Protein-protein interactions between large proteins: two-hybrid screening using a functionally classified library composed of long cDNAs | journal = Genome Res. | volume = 12 | issue = 11 | pages = 1773–84 | year = 2002 | pmid = 12421765 | pmc = 187542 | doi = 10.1101/gr.406902 }}
*{{cite journal | author=Schultz DC, Ayyanathan K, Negorev D, ''et al.'' |title=SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. |journal=Genes Dev. |volume=16 |issue= 8 |pages= 919-32 |year= 2002 |pmid= 11959841 |doi= 10.1101/gad.973302 }}
* {{cite journal | vauthors = Ayyanathan K, Lechner MS, Bell P, Maul GG, Schultz DC, Yamada Y, Tanaka K, Torigoe K, Rauscher FJ | title = Regulated recruitment of HP1 to a euchromatic gene induces mitotically heritable, epigenetic gene silencing: a mammalian cell culture model of gene variegation | journal = Genes Dev. | volume = 17 | issue = 15 | pages = 1855–69 | year = 2003 | pmid = 12869583 | pmc = 196232 | doi = 10.1101/gad.1102803 }}
*{{cite journal | author=Yang L, Mei Q, Zielinska-Kwiatkowska A, ''et al.'' |title=An ERG (ets-related gene)-associated histone methyltransferase interacts with histone deacetylases 1/2 and transcription co-repressors mSin3A/B. |journal=Biochem. J. |volume=369 |issue= Pt 3 |pages= 651-7 |year= 2003 |pmid= 12398767 |doi= 10.1042/BJ20020854 }}
* {{cite journal | vauthors = Wang H, An W, Cao R, Xia L, Erdjument-Bromage H, Chatton B, Tempst P, Roeder RG, Zhang Y | title = mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression | journal = Mol. Cell | volume = 12 | issue = 2 | pages = 475–87 | year = 2003 | pmid = 14536086 | doi = 10.1016/j.molcel.2003.08.007 }}
*{{cite journal | author=Nakayama M, Kikuno R, Ohara O |title=Protein-protein interactions between large proteins: two-hybrid screening using a functionally classified library composed of long cDNAs. |journal=Genome Res. |volume=12 |issue= 11 |pages= 1773-84 |year= 2003 |pmid= 12421765 |doi= 10.1101/gr.406902 }}
* {{cite journal | vauthors = Paces-Fessy M, Boucher D, Petit E, Paute-Briand S, Blanchet-Tournier MF | title = The negative regulator of Gli, Suppressor of fused (Sufu), interacts with SAP18, Galectin3 and other nuclear proteins | journal = Biochem. J. | volume = 378 | issue = Pt 2 | pages = 353–62 | year = 2004 | pmid = 14611647 | pmc = 1223961 | doi = 10.1042/BJ20030786 }}
*{{cite journal | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899-903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}
* {{cite journal | vauthors = Colland F, Jacq X, Trouplin V, Mougin C, Groizeleau C, Hamburger A, Meil A, Wojcik J, Legrain P, Gauthier JM | title = Functional proteomics mapping of a human signaling pathway | journal = Genome Res. | volume = 14 | issue = 7 | pages = 1324–32 | year = 2004 | pmid = 15231748 | pmc = 442148 | doi = 10.1101/gr.2334104 }}
*{{cite journal | author=Ayyanathan K, Lechner MS, Bell P, ''et al.'' |title=Regulated recruitment of HP1 to a euchromatic gene induces mitotically heritable, epigenetic gene silencing: a mammalian cell culture model of gene variegation. |journal=Genes Dev. |volume=17 |issue= 15 |pages= 1855-69 |year= 2003 |pmid= 12869583 |doi= 10.1101/gad.1102803 }}
* {{cite journal | vauthors = Sarraf SA, Stancheva I | title = Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly | journal = Mol. Cell | volume = 15 | issue = 4 | pages = 595–605 | year = 2004 | pmid = 15327775 | doi = 10.1016/j.molcel.2004.06.043 }}
*{{cite journal | author=Wang H, An W, Cao R, ''et al.'' |title=mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression. |journal=Mol. Cell |volume=12 |issue= 2 |pages= 475-87 |year= 2003 |pmid= 14536086 |doi= }}
* {{cite journal | vauthors = Goehler H, Lalowski M, Stelzl U, Waelter S, Stroedicke M, Worm U, Droege A, Lindenberg KS, Knoblich M, Haenig C, Herbst M, Suopanki J, Scherzinger E, Abraham C, Bauer B, Hasenbank R, Fritzsche A, Ludewig AH, Büssow K, Buessow K, Coleman SH, Gutekunst CA, Landwehrmeyer BG, Lehrach H, Wanker EE | title = A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington's disease | journal = Mol. Cell | volume = 15 | issue = 6 | pages = 853–65 | year = 2004 | pmid = 15383276 | doi = 10.1016/j.molcel.2004.09.016 }}
*{{cite journal | author=Paces-Fessy M, Boucher D, Petit E, ''et al.'' |title=The negative regulator of Gli, Suppressor of fused (Sufu), interacts with SAP18, Galectin3 and other nuclear proteins. |journal=Biochem. J. |volume=378 |issue= Pt 2 |pages= 353-62 |year= 2004 |pmid= 14611647 |doi= 10.1042/BJ20030786 }}
* {{cite journal | vauthors = Ichimura T, Watanabe S, Sakamoto Y, Aoto T, Fujita N, Nakao M | title = Transcriptional repression and heterochromatin formation by MBD1 and MCAF/AM family proteins | journal = J. Biol. Chem. | volume = 280 | issue = 14 | pages = 13928–35 | year = 2005 | pmid = 15691849 | doi = 10.1074/jbc.M413654200 }}
*{{cite journal | author=Ota T, Suzuki Y, Nishikawa T, ''et al.'' |title=Complete sequencing and characterization of 21,243 full-length human cDNAs. |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40-5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 }}
* {{cite journal | vauthors = Verschure PJ, van der Kraan I, de Leeuw W, van der Vlag J, Carpenter AE, Belmont AS, van Driel R | title = In vivo HP1 targeting causes large-scale chromatin condensation and enhanced histone lysine methylation | journal = Mol. Cell. Biol. | volume = 25 | issue = 11 | pages = 4552–64 | year = 2005 | pmid = 15899859 | pmc = 1140641 | doi = 10.1128/MCB.25.11.4552-4564.2005 }}
*{{cite journal | author=Colland F, Jacq X, Trouplin V, ''et al.'' |title=Functional proteomics mapping of a human signaling pathway. |journal=Genome Res. |volume=14 |issue= 7 |pages= 1324-32 |year= 2004 |pmid= 15231748 |doi= 10.1101/gr.2334104 }}
* {{cite journal | vauthors = Gevaert K, Staes A, Van Damme J, De Groot S, Hugelier K, Demol H, Martens L, Goethals M, Vandekerckhove J | title = Global phosphoproteome analysis on human HepG2 hepatocytes using reversed-phase diagonal LC | journal = Proteomics | volume = 5 | issue = 14 | pages = 3589–99 | year = 2005 | pmid = 16097034 | doi = 10.1002/pmic.200401217 }}
*{{cite journal | author=Sarraf SA, Stancheva I |title=Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. |journal=Mol. Cell |volume=15 |issue= 4 |pages= 595-605 |year= 2004 |pmid= 15327775 |doi= 10.1016/j.molcel.2004.06.043 }}
* {{cite journal | vauthors = Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE | title = A human protein-protein interaction network: a resource for annotating the proteome | journal = Cell | volume = 122 | issue = 6 | pages = 957–68 | year = 2005 | pmid = 16169070 | doi = 10.1016/j.cell.2005.08.029 }}
*{{cite journal | author=Goehler H, Lalowski M, Stelzl U, ''et al.'' |title=A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington's disease. |journal=Mol. Cell |volume=15 |issue= 6 |pages= 853-65 |year= 2004 |pmid= 15383276 |doi= 10.1016/j.molcel.2004.09.016 }}
* {{cite journal | vauthors = Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M | title = Towards a proteome-scale map of the human protein-protein interaction network | journal = Nature | volume = 437 | issue = 7062 | pages = 1173–8 | year = 2005 | pmid = 16189514 | doi = 10.1038/nature04209 }}
*{{cite journal | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121-7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}
*{{cite journal | author=Ichimura T, Watanabe S, Sakamoto Y, ''et al.'' |title=Transcriptional repression and heterochromatin formation by MBD1 and MCAF/AM family proteins. |journal=J. Biol. Chem. |volume=280 |issue= 14 |pages= 13928-35 |year= 2005 |pmid= 15691849 |doi= 10.1074/jbc.M413654200 }}
*{{cite journal  | author=Verschure PJ, van der Kraan I, de Leeuw W, ''et al.'' |title=In vivo HP1 targeting causes large-scale chromatin condensation and enhanced histone lysine methylation. |journal=Mol. Cell. Biol. |volume=25 |issue= 11 |pages= 4552-64 |year= 2005 |pmid= 15899859 |doi= 10.1128/MCB.25.11.4552-4564.2005 }}
*{{cite journal  | author=Gevaert K, Staes A, Van Damme J, ''et al.'' |title=Global phosphoproteome analysis on human HepG2 hepatocytes using reversed-phase diagonal LC. |journal=Proteomics |volume=5 |issue= 14 |pages= 3589-99 |year= 2006 |pmid= 16097034 |doi= 10.1002/pmic.200401217 }}
*{{cite journal  | author=Stelzl U, Worm U, Lalowski M, ''et al.'' |title=A human protein-protein interaction network: a resource for annotating the proteome. |journal=Cell |volume=122 |issue= 6 |pages= 957-68 |year= 2005 |pmid= 16169070 |doi= 10.1016/j.cell.2005.08.029 }}
*{{cite journal  | author=Rual JF, Venkatesan K, Hao T, ''et al.'' |title=Towards a proteome-scale map of the human protein-protein interaction network. |journal=Nature |volume=437 |issue= 7062 |pages= 1173-8 |year= 2005 |pmid= 16189514 |doi= 10.1038/nature04209 }}
}}
{{refend}}
{{refend}}


{{protein-stub}}
== External links ==
{{WikiDoc Sources}}
* {{FactorBook|SETDB1}}
 
{{NLM content}}
 
[[Category:Genes mutated in mice]]

Revision as of 06:10, 11 September 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Histone-lysine N-methyltransferase SETDB1 is an enzyme that in humans is encoded by the SETDB1 gene.[1][2]

Function

The SET domain is a highly conserved, approximately 150-amino acid motif implicated in the modulation of chromatin structure. It was originally identified as part of a larger conserved region present in the Drosophila Trithorax protein and was subsequently identified in the Drosophila Su(var)3-9 and 'Enhancer of zeste' proteins, from which the acronym SET is derived. Studies have suggested that the SET domain may be a signature of proteins that modulate transcriptionally active or repressed chromatin states through chromatin remodeling activities.[2]

Model organisms

Model organisms have been used in the study of SETDB1 function. A conditional knockout mouse line, called Setdb1tm1a(EUCOMM)Wtsi[8][9] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[10][11][12]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[6][13] Twenty seven tests were carried out on mutant mice and four significant abnormalities were observed.[6] No homozygous mutant embryos were identified during gestation, and therefore none survived until weaning. The remaining tests were carried out on heterozygous mutant adult mice and two significant abnormalities were observed. Females had abnormal peripheral blood lymphocytes data and both sexes displayed increased bone strength and mineral content.[6]

Interactions

SETDB1 has been shown to interact with TRIM28.[14]>

References

  1. Harte PJ, Wu W, Carrasquillo MM, Matera AG (June 1999). "Assignment of a novel bifurcated SET domain gene, SETDB1, to human chromosome band 1q21 by in situ hybridization and radiation hybrids". Cytogenet. Cell Genet. 84 (1–2): 83–6. doi:10.1159/000015220. PMID 10343109.
  2. 2.0 2.1 "Entrez Gene: SETDB1 SET domain, bifurcated 1".
  3. "Peripheral blood lymphocytes data for Setdb1". Wellcome Trust Sanger Institute.
  4. "Salmonella infection data for Setdb1". Wellcome Trust Sanger Institute.
  5. "Citrobacter infection data for Setdb1". Wellcome Trust Sanger Institute.
  6. 6.0 6.1 6.2 6.3 Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x.
  7. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  8. "International Knockout Mouse Consortium".
  9. "Mouse Genome Informatics".
  10. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  11. Dolgin E (2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  12. Collins FS, Rossant J, Wurst W (2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  13. van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biol. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353.
  14. Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher FJ (April 2002). "SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins". Genes Dev. 16 (8): 919–32. doi:10.1101/gad.973302. PMC 152359. PMID 11959841.

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.