21-hydroxylase deficiency laboratory findings: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
__NOTOC__ | __NOTOC__ | ||
{{Congenital adrenal hyperplasia due to 21-hydroxylase deficiency}} | {{Congenital adrenal hyperplasia due to 21-hydroxylase deficiency}} | ||
{{CMG}}; '''Associate Editor-In-Chief:''' {{CZ}} {{AAM}} | |||
{{CMG}}; '''Associate Editor-In-Chief:''' {{CZ}} | |||
==Overview== | ==Overview== | ||
Laboratory findings consistent with the diagnosis of 21-hydroxylase deficient congenital adrenal hyperplasia include [[hyponatremia]], [[hyperkalemia]], and low [[cortisol level]]. | |||
==Laboratory Findings== | ==Laboratory Findings== | ||
===Salt-wasting crises in infancy=== | ===Salt-wasting crises in infancy=== | ||
* Basic chemistries will reveal [[hyponatremia]], with a serum Na<sup>+</sup> typically between 105 and 125 mEq/L. [[Hyperkalemia]] in these infants can be extreme—levels of K<sup>+</sup> above 10 mEq/L are not unusual—as can the degree of [[metabolic acidosis]]. [[Hypoglycemia]] may be present. This is termed a salt-wasting crisis and rapidly causes death if not treated. | * Basic chemistries will reveal [[hyponatremia]], with a serum Na<sup>+</sup> typically between 105 and 125 mEq/L. [[Hyperkalemia]] in these infants can be extreme—levels of K<sup>+</sup> above 10 mEq/L are not unusual—as can the degree of [[metabolic acidosis]]. [[Hypoglycemia]] may be present. This is termed a salt-wasting crisis and rapidly causes death if not treated. | ||
Line 20: | Line 15: | ||
==References== | ==References== | ||
{{Reflist|2}} | {{Reflist|2}} | ||
[[Category:Pediatrics]] | [[Category:Pediatrics]] | ||
[[Category:Endocrinology]] | [[Category:Endocrinology]] | ||
[[Category:Genetic disorders]] | [[Category:Genetic disorders]] | ||
[[Category:Intersexuality]] | [[Category:Intersexuality]] | ||
{{WikiDoc Help Menu}} | {{WikiDoc Help Menu}} | ||
{{WikiDoc Sources}} | {{WikiDoc Sources}} |
Revision as of 19:18, 3 September 2015
Congenital adrenal hyperplasia due to 21-hydroxylase deficiency Microchapters |
Differentiating Congenital adrenal hyperplasia due to 21-hydroxylase deficiency from other Diseases |
---|
Diagnosis |
Treatment |
Case Studies |
21-hydroxylase deficiency laboratory findings On the Web |
American Roentgen Ray Society Images of 21-hydroxylase deficiency laboratory findings |
Directions to Hospitals Treating Congenital adrenal hyperplasia due to 21-hydroxylase deficiency |
Risk calculators and risk factors for 21-hydroxylase deficiency laboratory findings |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor-In-Chief: Cafer Zorkun, M.D., Ph.D. [2] Ahmad Al Maradni, M.D. [3]
Overview
Laboratory findings consistent with the diagnosis of 21-hydroxylase deficient congenital adrenal hyperplasia include hyponatremia, hyperkalemia, and low cortisol level.
Laboratory Findings
Salt-wasting crises in infancy
- Basic chemistries will reveal hyponatremia, with a serum Na+ typically between 105 and 125 mEq/L. Hyperkalemia in these infants can be extreme—levels of K+ above 10 mEq/L are not unusual—as can the degree of metabolic acidosis. Hypoglycemia may be present. This is termed a salt-wasting crisis and rapidly causes death if not treated.
Childhood onset (simple virilizing) CAH
- A diagnosis of SVCAH is usually confirmed by discovering extreme elevations of 17-hydroxyprogesterone along with moderately high testosterone levels. A cosyntropin stimulation test may be needed in mild cases, but usually the random levels of 17OHP are high enough to confirm the diagnosis.
Late onset (nonclassical) CAH
- Diagnosis of late-onset CAH may be suspected from a high 17-hydroxyprogesterone level, but some cases are so mild that the elevation is only demonstrable after cosyntropin stimulation.