Post-polio syndrome: Difference between revisions

Jump to navigation Jump to search
Prashanthsaddala (talk | contribs)
Prashanthsaddala (talk | contribs)
Line 23: Line 23:


Some post-polio patients report having [[memory]]  problems, or various other  [[cognition|cognitive]] difficulties that are difficult to distinguish from normal aging.  Some physicians have suspected that post-polio patients have an increased sensitivity to [[anesthetic]]s, but rigorous work on the subject remains to be done.  Weight gain is also a frequently noted symptom, though it is hard to tell if this is due to the disorder directly or due to the decreased level of physical activity that usually accompanies the disorder.
Some post-polio patients report having [[memory]]  problems, or various other  [[cognition|cognitive]] difficulties that are difficult to distinguish from normal aging.  Some physicians have suspected that post-polio patients have an increased sensitivity to [[anesthetic]]s, but rigorous work on the subject remains to be done.  Weight gain is also a frequently noted symptom, though it is hard to tell if this is due to the disorder directly or due to the decreased level of physical activity that usually accompanies the disorder.
Increased activity during intervening healthy years between the original infection and onset of PPS can amplify the symptoms. Thus, contracting poliomyelitis at a young age can result in particularly disabling PPS symptoms.<ref name="howard">{{Cite journal| author = Howard RS | title = Poliomyelitis and the postpolio syndrome | journal = BMJ | volume = 330 | issue = 7503 | pages = 1314–8 | year = 2005 | month = June | pmid = 15933355 | pmc = 558211 | doi = 10.1136/bmj.330.7503.1314 | url = http://bmj.com/cgi/pmidlookup?view=long&pmid=15933355| accessdate = 24 December 2008}}</ref>


== Causes ==
== Causes ==

Revision as of 15:44, 7 December 2012

For patient information, click here

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

WikiDoc Resources for Post-polio syndrome

Articles

Most recent articles on Post-polio syndrome

Most cited articles on Post-polio syndrome

Review articles on Post-polio syndrome

Articles on Post-polio syndrome in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Post-polio syndrome

Images of Post-polio syndrome

Photos of Post-polio syndrome

Podcasts & MP3s on Post-polio syndrome

Videos on Post-polio syndrome

Evidence Based Medicine

Cochrane Collaboration on Post-polio syndrome

Bandolier on Post-polio syndrome

TRIP on Post-polio syndrome

Clinical Trials

Ongoing Trials on Post-polio syndrome at Clinical Trials.gov

Trial results on Post-polio syndrome

Clinical Trials on Post-polio syndrome at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Post-polio syndrome

NICE Guidance on Post-polio syndrome

NHS PRODIGY Guidance

FDA on Post-polio syndrome

CDC on Post-polio syndrome

Books

Books on Post-polio syndrome

News

Post-polio syndrome in the news

Be alerted to news on Post-polio syndrome

News trends on Post-polio syndrome

Commentary

Blogs on Post-polio syndrome

Definitions

Definitions of Post-polio syndrome

Patient Resources / Community

Patient resources on Post-polio syndrome

Discussion groups on Post-polio syndrome

Patient Handouts on Post-polio syndrome

Directions to Hospitals Treating Post-polio syndrome

Risk calculators and risk factors for Post-polio syndrome

Healthcare Provider Resources

Symptoms of Post-polio syndrome

Causes & Risk Factors for Post-polio syndrome

Diagnostic studies for Post-polio syndrome

Treatment of Post-polio syndrome

Continuing Medical Education (CME)

CME Programs on Post-polio syndrome

International

Post-polio syndrome en Espanol

Post-polio syndrome en Francais

Business

Post-polio syndrome in the Marketplace

Patents on Post-polio syndrome

Experimental / Informatics

List of terms related to Post-polio syndrome

Overview

Post-polio syndrome (PPS) is a condition that affects survivors of poliomyelitis, a viral infection of the nervous system, after recovery from an initial paralytic attack of the virus. Typically the symptoms appear 20-40 years after the original infection, at an age of 35 to 60. Symptoms include new or increased muscular weakness, pain in the muscles, and fatigue.[1]

The precise mechanism that causes post-polio syndrome is unknown. It shares many features in common with myalgic encephalomyelitis, a form of chronic fatigue syndrome that is apparently caused by viral infections, but unlike those disorders it tends to be progressive, and can cause tangible loss of muscle strength.

Treatment generally is limited to supportive measures, primarily leg braces and energy-saving devices such as powered wheelchairs, plus pain relievers, sleep aids, etc.

Diagnosis

Diagnosis of post-polio syndrome can be difficult, since the symptoms are hard to separate from the original symptoms of polio and from the normal infirmities of aging. There is no laboratory test for post-polio syndrome, nor is there any other specific diagnostic, and diagnosis is usually a "diagnosis of exclusion" whereby other possible causes of the symptoms are eliminated.[2]

PPS may be difficult to diagnose in some because it is hard to determine what component of a neuromuscular deficit is old and what is new: Neurological examination aided by other laboratory studies can help to exclude all other possible diagnoses. Objective assessment of muscle strength in PPS patients may not be easy. Changes in muscle strength are determined in specific muscle groups sing various muscle scales which quantify strength, such as the Medical Research Council (MRC) scale. Magnetic resonance imaging (MRI), neuroimaging, and electrophysiological studies, muscle biopsies, or spinal fluid analysis may also be used in establishing a PPS diagnosis.[2]

In general, PPS is not life-threatening. The only exception is in patients left with severe residual respiratory difficulties, who may experience new severe respiratory impairment. Studies have proven that, compared to control populations, PPS patients lack any elevation of antibodies against the poliovirus, and because no poliovirus is excreted in the feces, it is not considered a recurrence of the original polio. Further, there is no evidence that the poliovirus can cause a persistent infection in humans. PPS can be confused with Amyotrophic lateral sclerosis (ALS), which progressively weakens muscles. PPS patients do not have an elevated risk of ALS.

Symptoms

Symptoms include new or increased muscular weakness, pain in the muscles, and fatigue.[1] Fatigue is often the most disabling symptom, as often even slight exertion can produce disabling fatigue and also increase other symptoms.[3]

Some post-polio patients report having memory problems, or various other cognitive difficulties that are difficult to distinguish from normal aging. Some physicians have suspected that post-polio patients have an increased sensitivity to anesthetics, but rigorous work on the subject remains to be done. Weight gain is also a frequently noted symptom, though it is hard to tell if this is due to the disorder directly or due to the decreased level of physical activity that usually accompanies the disorder.

Increased activity during intervening healthy years between the original infection and onset of PPS can amplify the symptoms. Thus, contracting poliomyelitis at a young age can result in particularly disabling PPS symptoms.[4]

Causes

Several theories have been proposed to explain post-polio symptoms. One theory of the mechanism behind the disorder is that it is due to "neural fatigue" from overworked neurons. The original polio infection generally results in the death of a substantial fraction of the motor neurons controlling skeletal muscles, and the theory is that the remaining neurons are thus overworked and eventually wear out.

Another theory holds that the original viral infection damages portions of the lower brain, possibly including the thalamus and hypothalamus. This somehow upsets the hormones that control muscle metabolism, and the result is a metabolic disorder similar to mitochondrial disorder that causes muscle pain and injury (via rhabdomyolysis) and also causes the fatigue. Some also believe that the original polio caused the atrophying of some muscles and as the person ages the weakness caused by loss of muscle mass due to aging is accelerated due to the person starting off with less muscle. Another possibility is that post-polio symptoms are due to some combination of mechanisms.

Neural fatigue

The most widely accepted theory is the "neural fatigue" one. Motor neuron fibers were originally damaged by the polio virus and were subsequently over-stressed because too few surviving neurons activated too many muscles. Eventually these neurons become fatigued and die, leading to the slowly advancing loss of muscle function that is typical of post-polio. This scenario may be accelerated by the fall-off in production of nerve growth factor (NGF) that occurs with menopause/andropause.

Mitochondrial disruption

This theory assumes that the major symptoms of PPS are a result of some interference with the action of mitochondria in the muscles and possibly the nerves. Failure of the mitochondria to produce sufficient energy would result in the muscle pain typical of PPS, and would, over time, cause muscle death (rhabdomyolysis) due to exerting the muscle beyond its ability to recover. The cause of this interference with mitochondrial action is presumably a change in the body's hormone balance, as mediated by the hypothalamus and other lower brain areas that control hormones (and which were, presumably, damaged by the original polio virus infection). As with the neural fatigue theory, menopause/andropause accelerates the process, though this time by most likely disrupting the NOTCH pathway that controls cell differentiation and damage repair.

One significant argument in favor of the mitochondrial disruption theory is that it explains the fatigue and cognitive difficulties ("brain fog") symptoms that usually accompany post-polio better than the neural fatigue theory does.

Reticular activating system damage

Damage to the reticular activating system and related areas such as the thalamus can also produce most of the fatigue, "brain fog", and dysautonomia symptoms of post-polio, and may be able to cause hormonal changes that result in progressive muscle weakness. Post-mortem examinations of polio patients have shown damage to these areas, and some PPS patients show lesions in these areas when examined by MRI. Many authorities believe that these areas are damaged by the initial polio infection, either as a direct result of the polio virus, or due to an autoimmune reaction following the polio infection.

One problem with this theory, though, is that it doesn't easily explain the delayed onset of PPS. It may be that this theory needs to be combined with one of the others to explain delayed onset.

Mechanical overwork

The stresses placed on nerves, muscles, and joints in a polio survivor are in many cases several times those experienced by other people. Problems with gait, in particular, can greatly over-stress joints and the surviving muscles, and the polio survivor is also likely to compensate for weakened arms by jerking more when lifting/pulling something. Over time (and again with menopause/andropause), this results in fatigue and damage.

Reactivated polio

An early theory stated that PPS is caused by reactivation of latent polio virus in the body, similar to the way that shingles is a reactivation of the chicken pox virus. This theory has been discredited by laboratory studies that show no active polio virus in the body.

Epidemiology

Post-polio syndrome occurs in approximately 25–50% of people who survive a poliomyelitis infection.[5] On average, it occurs 30–35 years afterwards; however, delays of between 8–71 years have been recorded.[6][7] The disease occurs sooner in persons with more severe initial infection.[7] Other factors that increase the risk of postpolio syndrome include increasing length of time since acute poliovirus infection, presence of permanent residual impairment after recovery from the acute illness,[6][7] and female sex.[8]

Post-polio syndrome is documented to occur in cases of nonparalytic polio (NPP). One review states late-onset weakness and fatigue occurs in 14% to 42% of NPP patients.[9]

Prognosis

In general, PPS is not life-threatening. The major exception are patients left with severe residual respiratory difficulties, who may experience new severe respiratory impairment. Studies have shown that, compared to control populations, PPS patients lack any elevation of antibodies against the poliovirus, and because no poliovirus is excreted in the feces, it is not considered a recurrence of the original polio. Further, there is no evidence that the poliovirus can cause a persistent infection in humans. PPS has been confused with amyotrophic lateral sclerosis (ALS), which progressively weakens muscles. PPS patients do not have an elevated risk of ALS.[10]

There have been no sufficient longitudinal studies on the prognosis of post-polio syndrome; however, speculations have been made by several physicians based on experience. Fatigue and mobility usually return to normal over a long period of time. The prognosis also differs depending upon different causes and factors affecting the individual.[4] An overall mortality rate of 25% exists due to possible respiratory paralysis of persons with post-polio syndrome; otherwise, post-polio syndrome is usually non-lethal.[11]

Treatment

Treatment for post-polio is primarily palliative, as no reliable therapy to reverse symptoms is known. Palliative treatment includes:

Very often fatigue is the most disabling symptom of PPS, and many of those with the disease have discovered that by carefully managing energy expenditure they can prevent or reduce the worst fatigue episodes. Further, for many this "energy management" approach appears to reduce pain. Though most authorities agree that rest is an important component of post-polio treatment, there is significant disagreement as to how much rest is necessary. Some hold that the best approach is to expend the absolute minimum amount of energy necessary to enjoy a reasonable lifestyle, while others feel that there is some threshold below which energy conservation is not helpful and may in fact be harmful (due to the general effects caused by lack of exercise).

The treatment for post-polio syndrome is generally palliative and consists of rest, analgesia (pain relief) and utilisation of mechanisms to make life easier such as powered wheelchairs. There are no reversive therapies. Fatigue is usually the most disabling symptom; energy conservation can significantly reduce fatigue episodes. Such conservation can be achieved with lifestyle changes, reducing workload and daytime sleeping. Weight loss is also recommended if patients are obese. In some cases, the use of lower limb orthotics can reduce energy usage. Medications for fatigue, such as amantadine and pyridostigmine,[12][13] have not been found to be effective in the management of PPS.[10] Muscle strength and endurance training are more important in managing the symptoms of PPS than the ability to perform long aerobic activity. Management should focus on treatments such as hydrotherapy and developing other routines that encourage strength but do not affect fatigue levels.[10] The recent trend is towards use of intravenous immunoglobulin (IVIG)which has yielded promising, albeit modest results.[14]

PPS increases the stress on the musculoskeletal system due to increasing muscular atrophy. A recent study showed that in a review of 539 PPS patients, 80% reported pain in muscles and joints and 87% only had fatigue.[15] Joint instability can cause significant pain in individuals with PPS should be adequately treated with painkillers. Supervised activity programs, decreasing mechanical stress with braces and adaptive equipment is recommended.[16][10]

Because PPS can fatigue facial muscles, as well as cause dysphagia (difficulty swallowing), dysarthria (difficulty speaking) or aphonia (inability to produce speech), persons with PPS may become malnourished due to difficulty eating. Compensatory routines can help relieve these symptoms such as eating smaller portions at a time and sitting down whilst eating.[17] PPS with respiratory involvement requires special management such as breathing exercises, chest percussion with a stethoscope on regular occasions for observation of the disease and management of secretions. Failure to properly assess PPS with respiratory involvement can increase the risk of missing aspiration pneumonia (an infection of the lower respiratory tract) in an individual. Severe cases may require permanent ventilation or tracheostomy. Sleep apnoea may also occur. Other management strategies that may lead to improvement include smoking cessation, treatment of other respiratory diseases and vaccination against respiratory infections such as influenza.[16]

Leg braces and other orthotics can reduce the stress on joints and, in some cases, muscles, and so may slow the progression of joint and muscle damage related to PPS. However, some authorities feel that many PPS patients rely on such items too much and for too long when they should be graduating to a wheelchair. Wheelchairs (particularly powered wheelchairs) and "scooters" (small battery-powered vehicles) are useful both to conserve energy and to reduce the stress on weakened joints and muscles. Non-powered wheelchairs, however, are not generally recommended since they place too much stress on arm muscles and joints and may take too much energy to operate. In some cases even the scooters are not recommended since operating the "tiller" of the typical scooter can be tiring to arm muscles. A standing frame can be used in conjunction with the wheelchair to provide alternative positioning and prevent secondary complications.

Post-polio syndrome often causes significant levels of pain, sometimes in specific muscles or joints, and sometimes body-wide. Various forms of narcotic and non-narcotic pain-relievers, muscle relaxants, tranquilizers, and sleep medications may help to deal with the pain and related sleep problems. In some cases surgery can be used to repair joint deformities, or to fuse joints (as in the back or ankle) that have become too weak.

Very few non-palliative treatments for post-polio syndrome have shown any promise, and none have been subjected to any sort of rigorous clinical testing. There are, however, a few treatments that have developed some "following" in the PPS community:

The amino acid, L-carnitine has several functions in the body, one of the most important being the transport of fatty acids into the mitochondria. Researchers in Australia have had some success using doses of several grams per day.

Coenzyme Q10is a general antioxidant, but it also plays a critical role in the function of the mitochondria, transporting electrons between the "complexes" that participate in the energy conversion cycle. A shortage of CoQ10 can cause the fatigue and muscle pain much like that experienced with PPS. Some PPS patients have reported significant improvements in their symptoms when taking several hundred milligrams of CoQ10 per day.

The pentose sugar D-ribose is the "R" in RNA and a critical component of DNA, RNA, and enzymes. It is also a component of ATP, the energy-transporting molecule produced by the mitochondria. A shortage of D-ribose can produce fatigue and muscle pain. Some PPS patients have reported significant improvement in pain and fatigue symptoms when taking on the order of 20 grams/day of D-ribose.

References

  1. 1.0 1.1 Trojan D, Cashman N (2005). "Post-poliomyelitis syndrome". Muscle Nerve. 31 (1): 6–19. PMID 15599928.
  2. 2.0 2.1 Silver JK, Gawne AC (2003). Postpolio Syndrome. Philadelphia: Hanley & Belfus. ISBN 1560536063.
  3. Jubelt B, Agre JC (2000). "Characteristics and management of postpolio syndrome". JAMA. 284 (4): 412–4. PMID 10904484.
  4. 4.0 4.1 Howard RS (2005). "Poliomyelitis and the postpolio syndrome". BMJ. 330 (7503): 1314–8. doi:10.1136/bmj.330.7503.1314. PMC 558211. PMID 15933355. Retrieved 24 December 2008. Unknown parameter |month= ignored (help)
  5. Jubelt, B (1999). Poliomyelitis and the Post-Polio Syndrome in Motor Disorders. Philadelphia: Lippincott Williams and Wilkins. p. 381. Unknown parameter |coauthors= ignored (help)
  6. 6.0 6.1 Jubelt B, Cashman NR (1987). "Neurological manifestations of the post-polio syndrome". Crit Rev Neurobiol. 3 (3): 199–220. PMID 3315237. |access-date= requires |url= (help)
  7. 7.0 7.1 7.2 Ramlow J, Alexander M, LaPorte R, Kaufmann C, Kuller L (1992). "Epidemiology of the post-polio syndrome". Am. J. Epidemiol. 136 (7): 769–86. doi:10.1093/aje/136.7.769. PMID 1442743. Retrieved 24 December 2008. Unknown parameter |month= ignored (help)
  8. Atkinson W, Hamborsky J, McIntyre L, Wolfe S (eds.) (2007). "Poliomyelitis". Epidemiology and Prevention of Vaccine-Preventable Diseases (The Pink Book) (PDF) (10th ed.). Washington DC: Public Health Foundation. pp. 101–14.
  9. Bruno RL (2000). "Paralytic vs. "nonparalytic" polio: distinction without a difference?". Am J Phys Med Rehabil. 79 (1): 4–12. doi:10.1097/00002060-200001000-00003. PMID 10678596.
  10. 10.0 10.1 10.2 10.3 Invalid <ref> tag; no text was provided for refs named khan
  11. Lindsay, Kenneth W (1991). Neurology and Neurosurgery Illustrated. United States: Churchill Livingstone. pp. 489–490. ISBN 0-443-04345-0. Unknown parameter |coauthors= ignored (help)
  12. Horemans, HL (2003 Dec). "Pyridostigmine in postpolio syndrome: no decline in fatigue and limited functional improvement". Journal of neurology, neurosurgery, and psychiatry. 74 (12): 1655–61. PMC 1757426. PMID 14638885. Unknown parameter |coauthors= ignored (help); Check date values in: |date= (help); |access-date= requires |url= (help)
  13. Trojan, DA (12 October 1999). "A multicenter, randomized, double-blinded trial of pyridostigmine in postpolio syndrome". Neurology. 53 (6): 1225–33. PMID 10522877. Unknown parameter |coauthors= ignored (help); |access-date= requires |url= (help)
  14. Farbu E (2010). "Update on current and emerging treatment options for post-polio syndrome". Ther Clin Risk Manag. 6: 307–13. doi:10.2147/TCRM.S4440. PMC 2909497. PMID 20668713.
  15. Ehde DM, Jensen MP, Engel JM, Turner JA, Hoffman AJ, Cardenas DD (2003). "Chronic pain secondary to disability: a review". Clin J Pain. 19 (1): 3–17. doi:10.1097/00002508-200301000-00002. PMID 12514452. Retrieved 24 December 2008.
  16. 16.0 16.1 Jubelt B, Agre JC (2000). "Characteristics and management of postpolio syndrome". JAMA. 284 (4): 412–4. doi:10.1001/jama.284.4.412. PMID 10904484. Retrieved 24 December 2008. Unknown parameter |month= ignored (help)
  17. Silbergleit AK, Waring WP, Sullivan MJ, Maynard FM (1991). "Evaluation, treatment, and follow-up results of post polio patients with dysphagia". Otolaryngol Head Neck Surg. 104 (3): 333–8. PMID 1902934. Unknown parameter |month= ignored (help); |access-date= requires |url= (help)

Further reading

  • Bruno, Richard L. (2002). The Polio Paradox. New York: Warner Books. ISBN 0446529079.
  • Maynard, F.M., & Headley, J.H. (Eds.) (1999). Handbook on the Late Effects of Poliomyelitis for Physicians and Survivors. Saint Louis, MO: GINI (now Post-Polio Health International). Information on 90 post-polio topics; a compilation of the research and experience of over 40 experts.
  • March of Dimes Birth Defects Foundation. (1999). Identifying Best Practices in Diagnosis & Care. Warm Springs, GA: March of Dimes International Conference on Post-Polio Syndrome
  • Nollet F. "Perceived health and physical functioning in postpoliomyelitis syndrome". Vrije Universiteit Amsterdam, 2002.
  • Nollet, F. "Post-polio syndrome". Orphanet Ecyclopaedia, 2003
  • Silver, Julie K. (2001). Post-Polio Syndrome: A Guide for Polio Survivors and Their Families. New Haven: Yale University Press. (Dr. Silver is Medical Director, Spaulding-Framingham Outpatient Center; Assistant Professor, Department of Physical Medicine and Rehabilitation, Harvard Medical School.)

External links

Template:Viral diseases


Template:WikiDoc Sources