Brugada syndrome overview: Difference between revisions
Line 7: | Line 7: | ||
==Epidemiology and Demographics== | ==Epidemiology and Demographics== | ||
Insofar as Brugada syndrome is a relatively newly recognized syndrome, its incidence and prevalence continues to increase. Brugada syndrome is quite common in Southeast Asia where it is endemic, and affects 50 out of every 10,000 individuals. It is the second leading cause of death after car accidents among young people in these countries. It has been estimated that Brugada syndrome accounts for 4% of all sudden cardiac deaths and 20% of sudden cardiac deaths among patients with structurally normal hearts. It is 8-10 times more common in men. | Insofar as Brugada syndrome is a relatively newly recognized syndrome, its incidence and prevalence continues to increase. Brugada syndrome is quite common in Southeast Asia where it is endemic, and affects 50 out of every 10,000 individuals. It is the second leading cause of death after car accidents among young people in these countries. It has been estimated that Brugada syndrome accounts for 4% of all sudden cardiac deaths and 20% of sudden cardiac deaths among patients with structurally normal hearts. It is 8-10 times more common in men. | ||
==Risk Factors== | |||
The EKG changes of Brugada syndrome can vary over time, depending on the autonomic balance and the administration of antiarrhythmic drugs. Adrenergic stimulation decreases the [[ST segment]] elevation, while [[vagal stimulation]] worsens it. During sleep, there is [[heightened vagal tone]], and the pattern may be exacerbated at that time (as is the risk of [[sudden cardiac death]] at that time). The administration of class Ia, Ic and III drugs increases the [[ST segment]] elevation, as does [[fever]]. The impact of exercise depends upon when the EKG is obtained: during exercise the [[ST segment]] elevation may decrease but may increase later after exercise when the body temperature has risen. Similar to [[early repolarization variant]], when the heart rate decreases, the [[ST segment]] elevation increases and when the heart rate increases the [[ST segment]] elevation decreases. While Brugada syndrome is often associated with polymorphic VT which may be self terminating, in the presence of autonomic imbalance, hypokalemia, fever or exacerbating drugs sustained ventricular fibrillation and sudden cardiac death may result.<ref name="pmid15898165">{{cite journal |author=Antzelevitch C, Brugada P, Borggrefe M, Brugada J, Brugada R, Corrado D, Gussak I, LeMarec H, Nademanee K, Perez Riera AR, Shimizu W, Schulze-Bahr E, Tan H, Wilde A |title=Brugada syndrome: report of the second consensus conference |journal=[[Heart Rhythm : the Official Journal of the Heart Rhythm Society]] |volume=2 |issue=4 |pages=429–40 |year=2005 |month=April |pmid=15898165 |doi= |url= |issn= |accessdate=2012-10-14}}</ref> | |||
==References== | ==References== |
Revision as of 20:41, 11 January 2013
Brugada syndrome Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Brugada syndrome overview On the Web |
American Roentgen Ray Society Images of Brugada syndrome overview |
Risk calculators and risk factors for Brugada syndrome overview |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]
Overview
The Brugada syndrome is a genetic disease that is characterized by abnormal electrocardiogram (EKG) findings and an increased risk of sudden cardiac death in young adults, and occasionally in children and infants.
Epidemiology and Demographics
Insofar as Brugada syndrome is a relatively newly recognized syndrome, its incidence and prevalence continues to increase. Brugada syndrome is quite common in Southeast Asia where it is endemic, and affects 50 out of every 10,000 individuals. It is the second leading cause of death after car accidents among young people in these countries. It has been estimated that Brugada syndrome accounts for 4% of all sudden cardiac deaths and 20% of sudden cardiac deaths among patients with structurally normal hearts. It is 8-10 times more common in men.
Risk Factors
The EKG changes of Brugada syndrome can vary over time, depending on the autonomic balance and the administration of antiarrhythmic drugs. Adrenergic stimulation decreases the ST segment elevation, while vagal stimulation worsens it. During sleep, there is heightened vagal tone, and the pattern may be exacerbated at that time (as is the risk of sudden cardiac death at that time). The administration of class Ia, Ic and III drugs increases the ST segment elevation, as does fever. The impact of exercise depends upon when the EKG is obtained: during exercise the ST segment elevation may decrease but may increase later after exercise when the body temperature has risen. Similar to early repolarization variant, when the heart rate decreases, the ST segment elevation increases and when the heart rate increases the ST segment elevation decreases. While Brugada syndrome is often associated with polymorphic VT which may be self terminating, in the presence of autonomic imbalance, hypokalemia, fever or exacerbating drugs sustained ventricular fibrillation and sudden cardiac death may result.[1]
References
- ↑ Antzelevitch C, Brugada P, Borggrefe M, Brugada J, Brugada R, Corrado D, Gussak I, LeMarec H, Nademanee K, Perez Riera AR, Shimizu W, Schulze-Bahr E, Tan H, Wilde A (2005). "Brugada syndrome: report of the second consensus conference". Heart Rhythm : the Official Journal of the Heart Rhythm Society. 2 (4): 429–40. PMID 15898165. Unknown parameter
|month=
ignored (help);|access-date=
requires|url=
(help)