Nephrotic syndrome pathophysiology: Difference between revisions

Jump to navigation Jump to search
Kalsang Dolma (talk | contribs)
Rim Halaby (talk | contribs)
Line 6: Line 6:
{{CMG}}
{{CMG}}
==Pathophysiology==
==Pathophysiology==
The [[glomerulus (kidney)|glomeruli]] of the kidneys are the parts that normally filter the blood. They consist of [[capillaries]] that are fenestrated (leaky, due to little holes called ''fenestrae'' or windows) and that allow fluid, salts, and other small solutes to flow through, but normally not proteins.
===Edema Formation===
The pathophysiology of edema formation is not simply due to a sodium retention following a decrease in systemic volume and fall in plasma colloid pressure.<ref name="pmid13412057">{{cite journal| author=BROWN E, HOPPER J, WENNESLAND R| title=Blood volume and its regulation. | journal=Annu Rev Physiol | year= 1957 | volume= 19 | issue= | pages= 231-54 | pmid=13412057 | doi=10.1146/annurev.ph.19.030157.001311 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=13412057 }} </ref><ref name="pmid14114444">{{cite journal| author=YAMAUCHI H, HOPPER J| title=HYPOVOLEMIC SHOCK AND HYPOTENSION AS A COMPLICATION IN THE NEPHROTIC SYNDROME. REPORT OF TEN CASES. | journal=Ann Intern Med | year= 1964 | volume= 60 | issue= | pages= 242-54 | pmid=14114444 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=14114444 }} </ref> Tubular absorption is increased in patients with nephrotic syndrome due to unknown mechanism.(0) Additionally, a modest decrease in GFR and filtration fraction due to a decrease in effective circulating volume leads to volume retention.<ref name="pmid6848563">{{cite journal| author=Ichikawa I, Rennke HG, Hoyer JR, Badr KF, Schor N, Troy JL et al.| title=Role for intrarenal mechanisms in the impaired salt excretion of experimental nephrotic syndrome. | journal=J Clin Invest | year= 1983 | volume= 71 | issue= 1 | pages= 91-103 | pmid=6848563 | doi= | pmc=PMC436841 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=6848563 }} </ref> Recent evidence has shown that edema formation and sodium retention  may be related to a primary intrinsic dysfunction of the renal handling of sodium followed by superimposing hypovolemia.<ref name="pmid496101">{{cite journal| author=Meltzer JI, Keim HJ, Laragh JH, Sealey JE, Jan KM, Chien S| title=Nephrotic syndrome: vasoconstriction and hypervolemic types indicated by renin-sodium profiling. | journal=Ann Intern Med | year= 1979 | volume= 91 | issue= 5 | pages= 688-96 | pmid=496101 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=496101 }} </ref><ref name="pmid474584">{{cite journal| author=Dorhout EJ, Roos JC, Boer P, Yoe OH, Simatupang TA| title=Observations on edema formation in the nephrotic syndrome in adults with minimal lesions. | journal=Am J Med | year= 1979 | volume= 67 | issue= 3 | pages= 378-84 | pmid=474584 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=474584 }} </ref><ref name="pmid6128546">{{cite journal| author=Brown EA, Markandu ND, Sagnella GA, Squires M, Jones BE, MacGregor GA| title=Evidence that some mechanism other than the renin system causes sodium retention in nephrotic syndrome. | journal=Lancet | year= 1982 | volume= 2 | issue= 8310 | pages= 1237-40 | pmid=6128546 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=6128546 }} </ref> It is believed that excessive proteinuria, as seen in patients with minimal change disease, and depletion of serum alubmin creates a disequilibrium between plasma and extravascular stores of albumin in attempt to restore the plasma-to-interstitial difference in colloid oncotic pressure.<ref name="pmid10215332">{{cite journal| author=Vande Walle JG, Donckerwolcke RA, Koomans HA| title=Pathophysiology of edema formation in children with nephrotic syndrome not due to minimal change disease. | journal=J Am Soc Nephrol | year= 1999 | volume= 10 | issue= 2 | pages= 323-31 | pmid=10215332 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=10215332 }} </ref> The disequilibrium creates a state of uncompensated hypovolemia when COP becomes < 8 mmHg.<ref name="pmid10215332">{{cite journal| author=Vande Walle JG, Donckerwolcke RA, Koomans HA| title=Pathophysiology of edema formation in children with nephrotic syndrome not due to minimal change disease. | journal=J Am Soc Nephrol | year= 1999 | volume= 10 | issue= 2 | pages= 323-31 | pmid=10215332 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=10215332 }} </ref> The drooping pressure temporarily stimulates aldosterone and other sodium-handling indices to retain sodium.<ref name="pmid10215332">{{cite journal| author=Vande Walle JG, Donckerwolcke RA, Koomans HA| title=Pathophysiology of edema formation in children with nephrotic syndrome not due to minimal change disease. | journal=J Am Soc Nephrol | year= 1999 | volume= 10 | issue= 2 | pages= 323-31 | pmid=10215332 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=10215332 }} </ref><ref name="pmid4022206">{{cite journal| author=Koomans HA, Kortlandt W, Geers AB, Dorhout Mees EJ| title=Lowered protein content of tissue fluid in patients with the nephrotic syndrome: observations during disease and recovery. | journal=Nephron | year= 1985 | volume= 40 | issue= 4 | pages= 391-5 | pmid=4022206 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=4022206 }} </ref><ref name="pmid3784303">{{cite journal| author=Koomans HA, Braam B, Geers AB, Roos JC, Dorhout Mees EJ| title=The importance of plasma protein for blood volume and blood pressure homeostasis. | journal=Kidney Int | year= 1986 | volume= 30 | issue= 5 | pages= 730-5 | pmid=3784303 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=3784303 }} </ref> Following sodium retention, a steady-state is reached and sodium is no longer actively retained.<ref name="pmid7603230">{{cite journal| author=Vande Walle JG, Donckerwolcke RA, van Isselt JW, Derkx FH, Joles JA, Koomans HA| title=Volume regulation in children with early relapse of minimal-change nephrosis with or without hypovolaemic symptoms. | journal=Lancet | year= 1995 | volume= 346 | issue= 8968 | pages= 148-52 | pmid=7603230 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=7603230 }} </ref><ref name="pmid8941579">{{cite journal| author=Van de Walle JG, Donckerwolcke RA, Greidanus TB, Joles JA, Koomans HA| title=Renal sodium handling in children with nephrotic relapse: relation to hypovolaemic symptoms. | journal=Nephrol Dial Transplant | year= 1996 | volume= 11 | issue= 11 | pages= 2202-8 | pmid=8941579 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8941579 }} </ref><ref name="pmid6486860">{{cite journal| author=Bohlin AB, Berg U| title=Renal sodium handling in minimal change nephrotic syndrome. | journal=Arch Dis Child | year= 1984 | volume= 59 | issue= 9 | pages= 825-30 | pmid=6486860 | doi= | pmc=PMC1628730 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=6486860 }} </ref> If a stable steady-state is not reached in cases when COP cannot be maintained above 8 mmHg, massive proteinuria persists and patients have a worse clinical presentation. <ref name="pmid10215332">{{cite journal| author=Vande Walle JG, Donckerwolcke RA, Koomans HA| title=Pathophysiology of edema formation in children with nephrotic syndrome not due to minimal change disease. | journal=J Am Soc Nephrol | year= 1999 | volume= 10 | issue= 2 | pages= 323-31 | pmid=10215332 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=10215332 }} </ref>


In nephrotic syndrome, the glomeruli become damaged due to inflammation and hyalinisation so that small proteins, such as [[albumins]] immunoglobulins and anti-thrombin can pass through the kidneys into urine.


Albumin is the major protein in the blood which maintains [[colloid]] osmotic pressure- this prevents leakage of blood from vessels into tissue. However, experiments show that the edema formation in nephrotic syndrome is more so due to microvascular damage and intense salt and water retention by the damaged kidneys (due to increased [[angiotensin]] secretion). The mechanism is very complex and still not fully understood.
It is important to recognize that the pathology of edema formation is not homogeneous. On the contrary, it is different with different diseases and is thus not comparable.<ref name="pmid10215332">{{cite journal| author=Vande Walle JG, Donckerwolcke RA, Koomans HA| title=Pathophysiology of edema formation in children with nephrotic syndrome not due to minimal change disease. | journal=J Am Soc Nephrol | year= 1999 | volume= 10 | issue= 2 | pages= 323-31 | pmid=10215332 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=10215332 }} </ref>
 
In response to leakage of albumin, the liver begins to make more of all its proteins, and levels of large proteins (such as [[alpha 2-macroglobulin]] and lipoproteins) increase. The excess lipoproteins end up in the urine filtrate, which is then rebsorbed by the tubular cells, which end up shedding and forming oval fat bodies or [[urinary casts#fatty casts|fatty casts]].


==References==
==References==

Revision as of 01:26, 17 November 2013

Nephrotic Syndrome Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Nephrotic syndrome from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X-Ray

Echocardiography or Ultrasound

CT Scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Nephrotic syndrome pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Nephrotic syndrome pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Nephrotic syndrome pathophysiology

CDC on Nephrotic syndrome pathophysiology

Nephrotic syndrome pathophysiology in the news

Blogs on Nephrotic syndrome pathophysiology

Directions to Hospitals Treating Nephrotic syndrome

Risk calculators and risk factors for Nephrotic syndrome pathophysiology

Please help WikiDoc by adding more content here. It's easy! Click here to learn about editing.

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Pathophysiology

Edema Formation

The pathophysiology of edema formation is not simply due to a sodium retention following a decrease in systemic volume and fall in plasma colloid pressure.[1][2] Tubular absorption is increased in patients with nephrotic syndrome due to unknown mechanism.(0) Additionally, a modest decrease in GFR and filtration fraction due to a decrease in effective circulating volume leads to volume retention.[3] Recent evidence has shown that edema formation and sodium retention may be related to a primary intrinsic dysfunction of the renal handling of sodium followed by superimposing hypovolemia.[4][5][6] It is believed that excessive proteinuria, as seen in patients with minimal change disease, and depletion of serum alubmin creates a disequilibrium between plasma and extravascular stores of albumin in attempt to restore the plasma-to-interstitial difference in colloid oncotic pressure.[7] The disequilibrium creates a state of uncompensated hypovolemia when COP becomes < 8 mmHg.[7] The drooping pressure temporarily stimulates aldosterone and other sodium-handling indices to retain sodium.[7][8][9] Following sodium retention, a steady-state is reached and sodium is no longer actively retained.[10][11][12] If a stable steady-state is not reached in cases when COP cannot be maintained above 8 mmHg, massive proteinuria persists and patients have a worse clinical presentation. [7]


It is important to recognize that the pathology of edema formation is not homogeneous. On the contrary, it is different with different diseases and is thus not comparable.[7]

References

  1. BROWN E, HOPPER J, WENNESLAND R (1957). "Blood volume and its regulation". Annu Rev Physiol. 19: 231–54. doi:10.1146/annurev.ph.19.030157.001311. PMID 13412057.
  2. YAMAUCHI H, HOPPER J (1964). "HYPOVOLEMIC SHOCK AND HYPOTENSION AS A COMPLICATION IN THE NEPHROTIC SYNDROME. REPORT OF TEN CASES". Ann Intern Med. 60: 242–54. PMID 14114444.
  3. Ichikawa I, Rennke HG, Hoyer JR, Badr KF, Schor N, Troy JL; et al. (1983). "Role for intrarenal mechanisms in the impaired salt excretion of experimental nephrotic syndrome". J Clin Invest. 71 (1): 91–103. PMC 436841. PMID 6848563.
  4. Meltzer JI, Keim HJ, Laragh JH, Sealey JE, Jan KM, Chien S (1979). "Nephrotic syndrome: vasoconstriction and hypervolemic types indicated by renin-sodium profiling". Ann Intern Med. 91 (5): 688–96. PMID 496101.
  5. Dorhout EJ, Roos JC, Boer P, Yoe OH, Simatupang TA (1979). "Observations on edema formation in the nephrotic syndrome in adults with minimal lesions". Am J Med. 67 (3): 378–84. PMID 474584.
  6. Brown EA, Markandu ND, Sagnella GA, Squires M, Jones BE, MacGregor GA (1982). "Evidence that some mechanism other than the renin system causes sodium retention in nephrotic syndrome". Lancet. 2 (8310): 1237–40. PMID 6128546.
  7. 7.0 7.1 7.2 7.3 7.4 Vande Walle JG, Donckerwolcke RA, Koomans HA (1999). "Pathophysiology of edema formation in children with nephrotic syndrome not due to minimal change disease". J Am Soc Nephrol. 10 (2): 323–31. PMID 10215332.
  8. Koomans HA, Kortlandt W, Geers AB, Dorhout Mees EJ (1985). "Lowered protein content of tissue fluid in patients with the nephrotic syndrome: observations during disease and recovery". Nephron. 40 (4): 391–5. PMID 4022206.
  9. Koomans HA, Braam B, Geers AB, Roos JC, Dorhout Mees EJ (1986). "The importance of plasma protein for blood volume and blood pressure homeostasis". Kidney Int. 30 (5): 730–5. PMID 3784303.
  10. Vande Walle JG, Donckerwolcke RA, van Isselt JW, Derkx FH, Joles JA, Koomans HA (1995). "Volume regulation in children with early relapse of minimal-change nephrosis with or without hypovolaemic symptoms". Lancet. 346 (8968): 148–52. PMID 7603230.
  11. Van de Walle JG, Donckerwolcke RA, Greidanus TB, Joles JA, Koomans HA (1996). "Renal sodium handling in children with nephrotic relapse: relation to hypovolaemic symptoms". Nephrol Dial Transplant. 11 (11): 2202–8. PMID 8941579.
  12. Bohlin AB, Berg U (1984). "Renal sodium handling in minimal change nephrotic syndrome". Arch Dis Child. 59 (9): 825–30. PMC 1628730. PMID 6486860.

Template:WH Template:WS