WBR0763: Difference between revisions

Jump to navigation Jump to search
Rim Halaby (talk | contribs)
No edit summary
YazanDaaboul (talk | contribs)
No edit summary
Line 1: Line 1:
{{WBRQuestion
{{WBRQuestion
|QuestionAuthor={{Rim}}
|QuestionAuthor={{YD}} (Reviewed by {{YD}})
|ExamType=USMLE Step 1
|ExamType=USMLE Step 1
|MainCategory=Physiology
|MainCategory=Physiology
Line 8: Line 8:
|MainCategory=Physiology
|MainCategory=Physiology
|SubCategory=Musculoskeletal/Rheumatology
|SubCategory=Musculoskeletal/Rheumatology
|MainCategory=Physiology
|MainCategory=Physiology
|MainCategory=Physiology
|MainCategory=Physiology
|MainCategory=Physiology
Line 20: Line 21:
|MainCategory=Physiology
|MainCategory=Physiology
|SubCategory=Musculoskeletal/Rheumatology
|SubCategory=Musculoskeletal/Rheumatology
|Prompt=Osteogenesis is a complex process that results in the development of bone. Intramembranous and endochondral ossifications are 2 phenomena that lead to osteogenesis. Both modes are similar in their conversion of a preexisting tissue into bone. However, intamembranous and endochondral ossifications differ greatly in the means to form bone. Which of the following statements is true regarding osteogenesis?
|Prompt=Osteogenesis is a complex process that results in the development of bone. Intramembranous and endochondral ossification are 2 processes that result in osteogenesis. Both processes are similar in their conversion of a pre-existing tissue into bone. However, intramembranous and endochondral ossification differ greatly in the means to form bone. Which of the following statements is true regarding osteogenesis?
|Explanation=Both processes, the intramembranous and the endochondral ossifications, are required for osteogenesis. While endochondral ossification requires cartilage from mesenchyme cells to be ultimately replaced by bone, intramembranous ossification does not involve cartilage and bone is formed directly by the formation of osteoblasts from neural crest-derived mesenchymal cells that secrete collagen-proteoglycan matrix. The latter may bind to calcium salts to ultimately calcify the osteoid, which is the prebone. As osteoblasts aid in the calcification process, they are trapped within the matrix. Trapped cells are differentiated into osteocytes, or mature bone cells. Intamembranous ossification requires the activation of transcription factors, such as CBFA1.
|Explanation=Both processes (intramembranous and the endochondral ossification) are required for osteogenesis. Intramembranous ossification does not involve cartilage, and bone is formed directly by the formation of osteoblasts from neural crest-derived mesenchymal cells. These cells secrete collagen-proteoglycan matrix that binds to calcium salts to ultimately calcify the osteoid (pre-bone). As osteoblasts aid in the calcification process, they are trapped within the matrix. Trapped cells are differentiated into osteocytes (mature bone cells). Intramembranous ossification requires the activation of transcription factors, such as CBFA1. On the other hand, endochondral ossification requires cartilage from mesenchyme cells that are ultimately replaced by bone. Endochondral ossification leads to formation of cartilage by chondrocytes that secrete the extracellular matrix. The cartilage forms a model that is eventually replaced by bone, starting at the center and then in the outward direction towards the edges. Osteoblasts form at the edge of the cartilage model and slowly replace cartilage by bone. Involvement of Pax1 and Scleraxis, 2 transcription factors, is required for formation of endochondral ossification. Osteoclasts, derived from macrophage stem cells, are linked to the matrix and pump hydrogen ions onto the matrix to acidify and dissolve it. Osteoprotegerin and its ligand are required for the conversion of macrophage stem cells into osteoclasts. Osteoclasts are under strict hormonal regulation at all times under physiologic conditions.
 
Endochondral ossification leads to formation of cartilage by chondrocytes that secrete the extracellular matrix. The cartilage forms a model is eventually replaced by bone starting at the center and then in the outward direction towards the edges. Osteoblasts start forming at the edge of the cartilage model and slowly replace cartilage by bone. Involvement of Pax1 and Scleraxis, 2 transcription factors, is required for formation of endochondral ossification.
 
Osteoclasts, derived from macrophage stem cells, are linked to the matrix and pump hydrogen ions onto the matrix to acidify and dissolve it. Osteoprotegerin and its ligand are required for the conversion of macrophage stem cells into osteoclasts. The latter is under strict hormonal regulation at all times under physiologic conditions.
 
Educational Objective:
Osteoblasts are derived from mesenchymal cells that originate from the neural crest, while osteoclasts are derived from macrophage stem cells.
 
Reference:
Gilbert SF. Osteogenesis: The development of bone. in Developmental Biology. 6th ed. Sinauer Associates, Sunderland (MA): 2000
|AnswerA=Flat bones of the skull are formed by endochondral ossification
|AnswerA=Flat bones of the skull are formed by endochondral ossification
|AnswerAExp=Flat bones of the skull are formed by intramembranous ossification.
|AnswerAExp=Flat bones of the skull are formed by intramembranous ossification.
|AnswerB=Osteoblasts are derived from mesenchymal cells that originate from the neural crest.
|AnswerB=Osteoblasts are derived from mesenchymal cells that originate from the neural crest
|AnswerBExp=Osteoblasts are indeed derived from mesenchymal cells that originate from the neural crest. In contrast, osteoclasts are derived from macrophage stem cells.
|AnswerBExp=Osteoblasts are derived from mesenchymal cells that originate from the neural crest. In contrast, osteoclasts are derived from macrophage stem cells.
|AnswerC=Activation of transcription factor CBFA1 is involved in endochondral ossification
|AnswerC=Activation of transcription factor CBFA1 is involved in endochondral ossification
|AnswerCExp=CBFA1 is a transcription factor involved in the process of intramembranous ossification. In contrast, the two transcription factors Pax1 and Scleraxis, are involved in endochondral ossification.
|AnswerCExp=FA1 CBis a transcription factor involved in the process of intramembranous ossification. In contrast, the two transcription factors Pax1 and Scleraxis are involved in endochondral ossification.
|AnswerD=Endochondral ossification spreads inwards in long bones from the edges towards the center of the bone
|AnswerD=Endochondral ossification spreads inwards in long bones from the edges towards the center of the bone
|AnswerDExp=Endochondral ossification spreads outward in long bones from the center towards the edges.
|AnswerDExp=Endochondral ossification spreads outward in long bones from the center towards the edges.
|AnswerE=Osteoblast differentiation is regulated by osteoprotegerin and its ligand.
|AnswerE=Osteoblast differentiation is regulated by osteoprotegerin and its ligand
|AnswerEExp=Osteoprotegerin, also known as osteoclastogenesis inhibitory factor (OCIF) is a hormone that promotes the conversion of macrophage stem cell into an osteoclast.
|AnswerEExp=Osteoprotegerin, also known as osteoclastogenesis inhibitory factor (OCIF), is a hormone that promotes the conversion of macrophage stem cell into an osteoclast.
|EducationalObjectives=Osteoblasts are derived from mesenchymal cells that originate from the neural crest, while osteoclasts are derived from macrophage stem cells.
|References=Gilbert SF. Osteogenesis: The development of bone. in Developmental Biology. 6th ed. Sinauer Associates, Sunderland (MA): 2000.<br>
First Aid 2014 page 419
|RightAnswer=B
|RightAnswer=B
|WBRKeyword=osteoblast, osteoclast, mesenchyme, mesenchymal, derived, derive, neural, crest, cell, cells, transcription, factor, factors, endochondral, intramembranous, ossification, osteogenesis, skull, bone, formation, chondrocyte, osteocyte, osteoprotegerin, differentiation, differentiate, CBF1, OCIF, Pax1, Scleraxis
|WBRKeyword=Osteoblast, Osteoclast, Mesenchyme, Neural crest cell, Transcription factor, Endochondral ossification, Intramembranous ossification, Osteogenesis, Chondrocyte, Osteocyte, Osteoprotegerin, CBF1, OCIF, Pax1, Scleraxis
|Approved=No
|Approved=Yes
}}
}}

Revision as of 14:41, 9 March 2015

 
Author [[PageAuthor::Yazan Daaboul, M.D. (Reviewed by Yazan Daaboul, M.D.)]]
Exam Type ExamType::USMLE Step 1
Main Category MainCategory::Physiology
Sub Category SubCategory::Musculoskeletal/Rheumatology
Prompt [[Prompt::Osteogenesis is a complex process that results in the development of bone. Intramembranous and endochondral ossification are 2 processes that result in osteogenesis. Both processes are similar in their conversion of a pre-existing tissue into bone. However, intramembranous and endochondral ossification differ greatly in the means to form bone. Which of the following statements is true regarding osteogenesis?]]
Answer A AnswerA::Flat bones of the skull are formed by endochondral ossification
Answer A Explanation AnswerAExp::Flat bones of the skull are formed by intramembranous ossification.
Answer B AnswerB::Osteoblasts are derived from mesenchymal cells that originate from the neural crest
Answer B Explanation AnswerBExp::Osteoblasts are derived from mesenchymal cells that originate from the neural crest. In contrast, osteoclasts are derived from macrophage stem cells.
Answer C AnswerC::Activation of transcription factor CBFA1 is involved in endochondral ossification
Answer C Explanation AnswerCExp::FA1 CBis a transcription factor involved in the process of intramembranous ossification. In contrast, the two transcription factors Pax1 and Scleraxis are involved in endochondral ossification.
Answer D AnswerD::Endochondral ossification spreads inwards in long bones from the edges towards the center of the bone
Answer D Explanation AnswerDExp::Endochondral ossification spreads outward in long bones from the center towards the edges.
Answer E AnswerE::Osteoblast differentiation is regulated by osteoprotegerin and its ligand
Answer E Explanation AnswerEExp::Osteoprotegerin, also known as osteoclastogenesis inhibitory factor (OCIF), is a hormone that promotes the conversion of macrophage stem cell into an osteoclast.
Right Answer RightAnswer::B
Explanation [[Explanation::Both processes (intramembranous and the endochondral ossification) are required for osteogenesis. Intramembranous ossification does not involve cartilage, and bone is formed directly by the formation of osteoblasts from neural crest-derived mesenchymal cells. These cells secrete collagen-proteoglycan matrix that binds to calcium salts to ultimately calcify the osteoid (pre-bone). As osteoblasts aid in the calcification process, they are trapped within the matrix. Trapped cells are differentiated into osteocytes (mature bone cells). Intramembranous ossification requires the activation of transcription factors, such as CBFA1. On the other hand, endochondral ossification requires cartilage from mesenchyme cells that are ultimately replaced by bone. Endochondral ossification leads to formation of cartilage by chondrocytes that secrete the extracellular matrix. The cartilage forms a model that is eventually replaced by bone, starting at the center and then in the outward direction towards the edges. Osteoblasts form at the edge of the cartilage model and slowly replace cartilage by bone. Involvement of Pax1 and Scleraxis, 2 transcription factors, is required for formation of endochondral ossification. Osteoclasts, derived from macrophage stem cells, are linked to the matrix and pump hydrogen ions onto the matrix to acidify and dissolve it. Osteoprotegerin and its ligand are required for the conversion of macrophage stem cells into osteoclasts. Osteoclasts are under strict hormonal regulation at all times under physiologic conditions.

Educational Objective: Osteoblasts are derived from mesenchymal cells that originate from the neural crest, while osteoclasts are derived from macrophage stem cells.
References: Gilbert SF. Osteogenesis: The development of bone. in Developmental Biology. 6th ed. Sinauer Associates, Sunderland (MA): 2000.
First Aid 2014 page 419]]

Approved Approved::Yes
Keyword WBRKeyword::Osteoblast, WBRKeyword::Osteoclast, WBRKeyword::Mesenchyme, WBRKeyword::Neural crest cell, WBRKeyword::Transcription factor, WBRKeyword::Endochondral ossification, WBRKeyword::Intramembranous ossification, WBRKeyword::Osteogenesis, WBRKeyword::Chondrocyte, WBRKeyword::Osteocyte, WBRKeyword::Osteoprotegerin, WBRKeyword::CBF1, WBRKeyword::OCIF, WBRKeyword::Pax1, WBRKeyword::Scleraxis
Linked Question Linked::
Order in Linked Questions LinkedOrder::