Coronary artery tortuosity: Difference between revisions
No edit summary |
|||
Line 12: | Line 12: | ||
==Pathophysiology== | ==Pathophysiology== | ||
The pathophysiology of coronary artery tortuosity is still unclear, and it is believed to be a result of an arterial remodeling due to elastin degeneration in the arterial wall.<ref name="pmid22163145">{{cite journal| author=Panduranga P, Riyami AA| title=Serpentine coronary arteries: in a patient with apical hypertrophic cardiomyopathy. | journal=Tex Heart Inst J | year= 2011 | volume= 38 | issue= 5 | pages= 594-5 | pmid=22163145 | doi= | pmc=PMC3231533 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22163145 }} </ref> Elastin degeneration may occur with age, atherosclerosis, hypertension, aneurysms, ectasias, and diabetes mellitus.<ref name="pmid3413685">{{cite journal| author=Dobrin PB, Schwarcz TH, Baker WH| title=Mechanisms of arterial and aneurysmal tortuosity. | journal=Surgery | year= 1988 | volume= 104 | issue= 3 | pages= 568-71 | pmid=3413685 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=3413685 }} </ref> | |||
CT can result from a congenital defect, as with the arterial tortuosity syndrome, which is an autosomal recessive connective tissue condition, and characterized by generalised tortuosity and elongation of all major arteries, and involvement of the skin, joints, and other organs.<ref name="pmid8958317">{{cite journal| author=Pletcher BA, Fox JE, Boxer RA, Singh S, Blumenthal D, Cohen T et al.| title=Four sibs with arterial tortuosity: description and review of the literature. | journal=Am J Med Genet | year= 1996 | volume= 66 | issue= 2 | pages= 121-8 | pmid=8958317 | doi=10.1002/(SICI)1096-8628(19961211)66:2<121::AID-AJMG1>3.0.CO;2-U | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8958317 }} </ref> | CT can result from a congenital defect, as with the arterial tortuosity syndrome, which is an autosomal recessive connective tissue condition, and characterized by generalised tortuosity and elongation of all major arteries, and involvement of the skin, joints, and other organs.<ref name="pmid8958317">{{cite journal| author=Pletcher BA, Fox JE, Boxer RA, Singh S, Blumenthal D, Cohen T et al.| title=Four sibs with arterial tortuosity: description and review of the literature. | journal=Am J Med Genet | year= 1996 | volume= 66 | issue= 2 | pages= 121-8 | pmid=8958317 | doi=10.1002/(SICI)1096-8628(19961211)66:2<121::AID-AJMG1>3.0.CO;2-U | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8958317 }} </ref> |
Revision as of 14:21, 17 December 2013
Coronary Angiography | |
General Principles | |
---|---|
Anatomy & Projection Angles | |
Normal Anatomy | |
Anatomic Variants | |
Projection Angles | |
Epicardial Flow & Myocardial Perfusion | |
Epicardial Flow | |
Myocardial Perfusion | |
Lesion Complexity | |
ACC/AHA Lesion-Specific Classification of the Primary Target Stenosis | |
Lesion Morphology | |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]
Synonyms and keywords: Serpentine coronary artery
Overview
Coronary tortuosity (CT) is a common finding in coronary angiography settings. Although the unclear clinical importance of this phenomenon, the importance of CT comes from the possibility of reducing the coronary blood supply, through the reduced coronary perfusion pressure distal to the tortuous point of the coronary artery, as a result to this kinking and tortuosity, which may lead to ischemia.[1]
Definition
Although coronary artery tortuosity still has unclear fixed definition, some authors describe this phenomenon as a fixed ≥3 bends during both systole and diastole, in at least a single epicardial artery, with each bend ≥45° change in the vessel direction.[2] On the other hand, severe CT is described as a two following 180°turns of a major epicardial artery.[3]
Pathophysiology
The pathophysiology of coronary artery tortuosity is still unclear, and it is believed to be a result of an arterial remodeling due to elastin degeneration in the arterial wall.[4] Elastin degeneration may occur with age, atherosclerosis, hypertension, aneurysms, ectasias, and diabetes mellitus.[5]
CT can result from a congenital defect, as with the arterial tortuosity syndrome, which is an autosomal recessive connective tissue condition, and characterized by generalised tortuosity and elongation of all major arteries, and involvement of the skin, joints, and other organs.[6]
Diagnosis
Coronary Angiography
A highly curved or tortuous vessel segment may result in substantial foreshortening of the artery. The length of the stenosis should therefore be assessed in the most unforeshortened projection so that the appropriate length of stents and balloons can be selected.
Clinical Significance
Severe vessel tortuosity and the presence of eccentric angulated lesions have long been identified as significant predictors of percutaneous coronary intervention (PCI) failure, as well as worse clinical outcomes[7]. Challenges in the treatment of angulated lesions and lesions in tortuous segments includes difficulty in delivering the interventional equipment and the increased risk of vessel dissection and vessel perforation.
PCI in the angulated or tortuous lesion
Example
References
- ↑ Zegers ES, Meursing BT, Zegers EB, Oude Ophuis AJ (2007). "Coronary tortuosity: a long and winding road". Neth Heart J. 15 (5): 191–5. PMC 1877966. PMID 17612682.
- ↑ Turgut O, Yilmaz A, Yalta K, Yilmaz BM, Ozyol A, Kendirlioglu O; et al. (2007). "Tortuosity of coronary arteries: an indicator for impaired left ventricular relaxation?". Int J Cardiovasc Imaging. 23 (6): 671–7. doi:10.1007/s10554-006-9186-4. PMID 17216126.
- ↑ Groves SS, Jain AC, Warden BE, Gharib W, Beto RJ (2009). "Severe coronary tortuosity and the relationship to significant coronary artery disease". W V Med J. 105 (4): 14–7. PMID 19585899.
- ↑ Panduranga P, Riyami AA (2011). "Serpentine coronary arteries: in a patient with apical hypertrophic cardiomyopathy". Tex Heart Inst J. 38 (5): 594–5. PMC 3231533. PMID 22163145.
- ↑ Dobrin PB, Schwarcz TH, Baker WH (1988). "Mechanisms of arterial and aneurysmal tortuosity". Surgery. 104 (3): 568–71. PMID 3413685.
- ↑ Pletcher BA, Fox JE, Boxer RA, Singh S, Blumenthal D, Cohen T; et al. (1996). "Four sibs with arterial tortuosity: description and review of the literature". Am J Med Genet. 66 (2): 121–8. doi:10.1002/(SICI)1096-8628(19961211)66:2<121::AID-AJMG1>3.0.CO;2-U. PMID 8958317.
- ↑ Gibson CM, Bigelow B, James D, Tepper MR, Murphy SA, Kirtane AJ; et al. (2004). "Association of lesion complexity following fibrinolytic administration with mortality in ST-elevation myocardial infarction". Am J Cardiol. 94 (1): 108–11. doi:10.1016/j.amjcard.2004.03.038. PMID 15219518.