Lopressor clinical pharmacology: Difference between revisions

Jump to navigation Jump to search
Gerald Chi (talk | contribs)
mNo edit summary
GeraldChi (talk | contribs)
No edit summary
Line 87: Line 87:
{{FDA}}
{{FDA}}


[[Category:Antianginals]]
[[Category:Antiarrhythmic agents]]
[[Category:Antihypertensive agents]]
[[Category:Antimigraine drugs]]
[[Category:Beta blockers]]
[[Category:Beta blockers]]
[[Category:Cardiovascular Drugs]]
[[Category:Cardiovascular Drugs]]
[[Category:Drugs]]

Revision as of 00:49, 14 March 2014

Metoprolol
Clinical data
Trade namesLopressor, Toprol-xl
AHFS/Drugs.comMonograph
MedlinePlusa682864
[[Regulation of therapeutic goods |Template:Engvar data]]
Pregnancy
category
  • AU: C
  • US: C (Risk not ruled out)
Routes of
administration
Oral, IV
ATC code
Legal status
Legal status
  • In general: ℞ (Prescription only)
Pharmacokinetic data
Bioavailability12%
MetabolismHepatic via CYP2D6, CYP3A4
Elimination half-life3-7 hours
ExcretionRenal
Identifiers
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
E number{{#property:P628}}
ECHA InfoCard{{#property:P2566}}Lua error in Module:EditAtWikidata at line 36: attempt to index field 'wikibase' (a nil value).
Chemical and physical data
FormulaC15H25NO3
Molar mass267.364 g/mol
3D model (JSmol)
Melting point120 °C (248 °F)
  (verify)

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Mechanism of Action

Lopressor is a beta1-selective (cardioselective) adrenergic receptor blocker. This preferential effect is not absolute, however, and at higher plasma concentrations, Lopressor also inhibits beta2-adrenoreceptors, chiefly located in the bronchial and vascular musculature.

Clinical pharmacology studies have demonstrated the beta-blocking activity of metoprolol, as shown by:

Hypertension

The mechanism of the antihypertensive effects of beta-blocking agents has not been fully elucidated. However, several possible mechanisms have been proposed:

  • A central effect leading to reduced sympathetic outflow to the periphery.
  • Suppression of renin activity

Angina Pectoris

By blocking catecholamine-induced increases in heart rate, in velocity and extent of myocardial contraction, and in blood pressure, Lopressor reduces the oxygen requirements of the heart at any given level of effort, thus making it useful in the long-term management of angina pectoris.

Myocardial Infarction

The precise mechanism of action of Lopressor in patients with suspected or definite myocardial infarction is not known.

Pharmacodynamics

Relative beta1 selectivity is demonstrated by the following: (1) In healthy subjects, Lopressor is unable to reverse the beta2-mediated vasodilating effects of epinephrine. This contrasts with the effect of nonselective (beta1 plus beta2) beta blockers, which completely reverse the vasodilating effects of epinephrine. (2) In asthmatic patients, Lopressor reduces FEV1 and FVC significantly less than a nonselective beta blocker, propranolol, at equivalent beta1-receptor blocking doses.

Lopressor has no intrinsic sympathomimetic activity, and membrane-stabilizing activity is detectable only at doses much greater than required for beta blockade. Animal and human experiments indicate that Lopressor slows the sinus rate and decreases AV nodal conduction.

Significant beta-blocking effect (as measured by reduction of exercise heart rate) occurs within 1 hour after oral administration, and its duration is dose-related. For example, a 50% reduction of the maximum effect after single oral doses of 20, 50, and 100 mg occurred at 3.3, 5.0, and 6.4 hours, respectively, in normal subjects. After repeated oral dosages of 100 mg twice daily, a significant reduction in exercise systolic blood pressure was evident at 12 hours. When the drug was infused over a 10-minute period, in normal volunteers, maximum beta blockade was achieved at approximately 20 minutes. Equivalent maximal beta-blocking effect is achieved with oral and intravenous doses in the ratio of approximately 2.5:1.

There is a linear relationship between the log of plasma levels and reduction of exercise heart rate. However, antihypertensive activity does not appear to be related to plasma levels. Because of variable plasma levels attained with a given dose and lack of a consistent relationship of antihypertensive activity to dose, selection of proper dosage requires individual titration.

In several studies of patients with acute myocardial infarction, intravenous followed by oral administration of Lopressor caused a reduction in heart rate, systolic blood pressure and cardiac output. Stroke volume, diastolic blood pressure and pulmonary artery end diastolic pressure remained unchanged.

In patients with angina pectoris, plasma concentration measured at 1 hour is linearly related to the oral dose within the range of 50-400 mg. Exercise heart rate and systolic blood pressure are reduced in relation to the logarithm of the oral dose of metoprolol. The increase in exercise capacity and the reduction in left ventricular ischemia are also significantly related to the logarithm of the oral dose.

Pharmacokinetics

Absorption

The estimated oral bioavailability of immediate release metoprolol is about 50% because of pre-systemic metabolism which is saturable leading to non-proportionate increase in the exposure with increased dose.

Distribution

Metoprolol is extensively distributed with a reported volume of distribution of 3.2 to 5.6 L/kg. About 10% of metoprolol in plasma is bound to serum albumin. Metoprolol is known to cross the placenta and is found in breast milk. Metoprolol is also known to cross the blood brain barrier following oral administration and CSF concentrations close to that observed in plasma have been reported. Metoprolol is not a significant P-glycoprotein substrate.

Metabolism

Lopressor is primarily metabolized by CYP2D6. Metoprolol is a racemic mixture of R- and S- enantiomers, and when administered orally, it exhibits stereoselective metabolism that is dependent on oxidation phenotype. CYP2D6 is absent (poor metabolizers) in about 8% of Caucasians and about 2% of most other populations. Poor CYP2D6 metabolizers exhibit several-fold higher plasma concentrations of Lopressor than extensive metabolizers with normal CYP2D6 activity thereby decreasing Lopressor’s cardioselectivity.

Elimination

Elimination of Lopressor is mainly by biotransformation in the liver. The mean elimination half-life of metoprolol is 3 to 4 hours; in poor CYP2D6 metabolizers the half-life may be 7 to 9 hours. Approximately 95% of the dose can be recovered in urine. In most subjects (extensive metabolizers), less than 5% of an oral dose and less than 10% of an intravenous dose are excreted as unchanged drug in the urine. In poor metabolizers, up to 30% or 40% of oral or intravenous doses, respectively, may be excreted unchanged; the rest is excreted by the kidneys as metabolites that appear to have no beta blocking activity. The renal clearance of the stereo-isomers does not exhibit stereo-selectivity in renal excretion.

Special populations

Geriatric patients

The geriatric population may show slightly higher plasma concentrations of metoprolol as a combined result of a decreased metabolism of the drug in elderly population and a decreased hepatic blood flow. However, this increase is not clinically significant or therapeutically relevant.

Renal impairment

The systemic availability and half-life of Lopressor in patients with renal failure do not differ to a clinically significant degree from those in normal subjects.

Hepatic Impairment

Since the drug is primarily eliminated by hepatic metabolism, hepatic impairment may impact the pharmacokinetics of metoprolol. The elimination half-life of metoprolol is considerably prolonged, depending on severity (up to 7.2 h).[1]

References

  1. "LOPRESSOR (METOPROLOL TARTRATE) TABLET [NOVARTIS PHARMACEUTICALS CORPORATION]".

Adapted from the FDA Package Insert.