Cardiogenic shock primary prevention: Difference between revisions
Joao Silva (talk | contribs) |
Joao Silva (talk | contribs) |
||
Line 7: | Line 7: | ||
==Primary prevention== | ==Primary prevention== | ||
Attending to the definition of [[primary prevention]], namely the group of measures that aim to avoid the development of a disease state (preventive measures) and considering the fact that [[left ventricular failure]] following [[acute MI]] is the most common cause of cardiogenic shock, these patients should undergo [[primary prevention]] of [[myocardial infarction]]. | Attending to the definition of [[primary prevention]], namely the group of measures that aim to avoid the development of a disease state (preventive measures) and considering the fact that [[left ventricular failure]] following [[acute MI]] is the most common cause of cardiogenic shock, these patients should undergo [[primary prevention]] of [[myocardial infarction]].<ref name="pmid24222015">{{cite journal| author=Eckel RH, Jakicic JM, Ard JD, Hubbard VS, de Jesus JM, Lee IM et al.| title=2013 AHA/ACC Guideline on Lifestyle Management to Reduce Cardiovascular Risk: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. | journal=Circulation | year= 2013 | volume= | issue= | pages= | pmid=24222015 | doi=10.1161/01.cir.0000437740.48606.d1 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=24222015 }} </ref> | ||
==References== | ==References== |
Revision as of 12:26, 11 June 2014
Cardiogenic Shock Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Cardiogenic shock primary prevention On the Web |
American Roentgen Ray Society Images of Cardiogenic shock primary prevention |
Risk calculators and risk factors for Cardiogenic shock primary prevention |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: João André Alves Silva, M.D. [2]
Overview
Cardiogenic shock is considered an emergency and irrespectively to the therapeutic approach, the target goal of any therapy is prompt revascularization of ischemic myocardium. This should be achieved in the shortest timespan possible. There are two major categories of treatment for cardiogenic shock, the medical/conservative approach and the interventional approach. The ideal treatment combines both mechanisms, in which medical therapy, after restored filling pressures, allows hemodynamical stabilization of the patient, until interventional methods, that contribute to the reversal of the process leading to the shock state, may performed. The interventional approach may include PCI or coronary artery bypass graft surgery (CABG) and in both techniques the goal is not only reperfusion of the occluded coronary artery, but also prevention of vessel reoclusion. If there is no access to a cardiac catheterization facility, nor the possibility of transferring the patient to one within 90 minutes, then immediately thrombolytic therapy should be considered.[1] Other important factors to increase the chances of a better outcome are: mechanical ventilation, in order to improve tissue oxygenation, and close monitoring of the therapeutic dosages, particularly of vasoactive drugs, since these have been associated with excess mortality due to toxicity effects.[2][3] Also, it is recommended invasive hemodynamic monitoring, in order to monitor and guide the effects of the therapy as well as the overall status of the patient. The success of reperfusion is usually suggested by the relief of symptoms, restoration of hemodynamic parameters and electrical stability, as well as the reduction of at least 50% in the ST-segment on the EKG, in the case of a STEMI.[1][4]
Primary prevention
Attending to the definition of primary prevention, namely the group of measures that aim to avoid the development of a disease state (preventive measures) and considering the fact that left ventricular failure following acute MI is the most common cause of cardiogenic shock, these patients should undergo primary prevention of myocardial infarction.[5]
References
- ↑ 1.0 1.1 Ng, R.; Yeghiazarians, Y. (2011). "Post Myocardial Infarction Cardiogenic Shock: A Review of Current Therapies". Journal of Intensive Care Medicine. 28 (3): 151–165. doi:10.1177/0885066611411407. ISSN 0885-0666.
- ↑ TRIUMPH Investigators. Alexander JH, Reynolds HR, Stebbins AL, Dzavik V, Harrington RA; et al. (2007). "Effect of tilarginine acetate in patients with acute myocardial infarction and cardiogenic shock: the TRIUMPH randomized controlled trial". JAMA. 297 (15): 1657–66. doi:10.1001/jama.297.15.joc70035. PMID 17387132.
- ↑ Sakr Y, Reinhart K, Vincent JL, Sprung CL, Moreno R, Ranieri VM; et al. (2006). "Does dopamine administration in shock influence outcome? Results of the Sepsis Occurrence in Acutely Ill Patients (SOAP) Study". Crit Care Med. 34 (3): 589–97. doi:10.1097/01.CCM.0000201896.45809.E3. PMID 16505643.
- ↑ Hochman, Judith (2009). Cardiogenic shock. Chichester, West Sussex, UK Hoboken, NJ: Wiley-Blackwell. ISBN 9781405179263.
- ↑ Eckel RH, Jakicic JM, Ard JD, Hubbard VS, de Jesus JM, Lee IM; et al. (2013). "2013 AHA/ACC Guideline on Lifestyle Management to Reduce Cardiovascular Risk: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines". Circulation. doi:10.1161/01.cir.0000437740.48606.d1. PMID 24222015.