Pulmonary embolism laboratory findings: Difference between revisions
Rim Halaby (talk | contribs) |
Rim Halaby (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
__NOTOC__ | __NOTOC__ | ||
{{Pulmonary embolism}} | {{Pulmonary embolism}} | ||
'''Editor(s)-In-Chief:''' [[C. Michael Gibson, M.S., M.D.]] [mailto:charlesmichaelgibson@gmail.com], {{ATI}}; {{AE}} | '''Editor(s)-In-Chief:''' [[C. Michael Gibson, M.S., M.D.]] [mailto:charlesmichaelgibson@gmail.com], {{ATI}}; {{AE}} {{Rim}} | ||
==Overview== | ==Overview== |
Revision as of 18:19, 18 June 2014
Pulmonary Embolism Microchapters |
Diagnosis |
---|
Pulmonary Embolism Assessment of Probability of Subsequent VTE and Risk Scores |
Treatment |
Follow-Up |
Special Scenario |
Trials |
Case Studies |
Pulmonary embolism laboratory findings On the Web |
Directions to Hospitals Treating Pulmonary embolism laboratory findings |
Risk calculators and risk factors for Pulmonary embolism laboratory findings |
Editor(s)-In-Chief: C. Michael Gibson, M.S., M.D. [1], The APEX Trial Investigators; Associate Editor(s)-in-Chief: Rim Halaby, M.D. [2]
Overview
The results of routine laboratory tests including arterial blood gas analysis are non-specific in making the diagnosis of pulmonary embolism. These laboratory studies can be obtained to rule-out other cause of chest discomfort and tachypnea. In patients with acute pulmonary embolism, non-specific lab findings include: leukocytosis, elevated ESR with an elevated serum LDH and serum transaminase (especially AST or SGOT). A negative D-dimer in a patient with low to intermediate probability of pulmonary embolism strongly suggests pulmonary embolism is not present.
Laboratory Findings
D-dimer Test
- The D-dimer cut-off values varies among tests; however, plasma D-dimer > 500 ng/mL is the most commonly used cut-off concentration.[1]
- Plasma D-dimer>500 ng/ml, PE present (sensitivity: 84.8%; specificity:68.4%)[2]
- Plasma D-dimer<500 excludes PE (high negative predictive value)
- However, the use of the cut off value 500 ng/mL for abnormal D-dimer limits the diagnostic role of D-dimer in the elderly, among whom D-dimer increases with age in the absence of any ongoing venous thromboembolism process. In a metanalysis of 5 cohort studies of 2818 subjects with low clinical probability of DVT, the use of an age adjusted cut-off value of D-dimer increases the number of subjects in whom DVT can be excluded.[3] A metaanalysis of 13 cohorts of 12,497 patients with a low probability of venous thromboembolism revealed that the use of an age adjusted cut point for the D-dimer concentration increases the specificity of this test without altering its sensitivity.[4]
- According to a multicenter, multinational prospective study of 3346 subjects presenting to the emergency department for suspicion of pulmonary embolism, the use of a fixed D-dimer cut-off value is compared to an age adjusted D-dimer cut-off value. The use of the age adjusted cut-off value in patients with low clinical probability of pulmonary embolism is associated with an increased number of patients in whom pulmonary embolism is excluded with a decreased likelihood of the occurrence of subsequent venous thromboembolism episodes.[5]
- The age adjusted cut off value of D-dimer is the following:
Routine Blood Tests
- In patients with acute pulmonary embolism, routine laboratory findings are non-specific and include:
- Leukocytosis[6]
- Elevated ESR[7]
- Elevated serum LDH[8]
- Elevated serum transaminase (especially AST or SGOT)[9]
- Serum bilirubin levels are found to be within normal limits
Workup for Hypercoagulability
- Workup for hypercoagulation includes:
- Activated protein C resistance
- Factor V Leiden mutation
- Protein C
- Protein S (free and total)
- Antithrombin
- Lupus anticoagulant
- Anticardiolipin antibodies
- Plasma homocysteine values
The 2008 Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC)[10]
Suspected Non High-risk PE Patients (DO NOT EDIT)[10]
Class I |
"1. Plasma D-dimer measurement is recommended in emergency department patients to reduce the need for unnecessary imaging and irradiation, preferably with the use of a highly sensitive assay. (Level of Evidence: A) " |
Low Clinical Probability (DO NOT EDIT)[10]
Class I |
"1. Normal D-dimer level using either a highly or moderately sensitive assay excludes pulmonary embolism. (Level of Evidence: A) " |
Intermediate Clinical Probability (DO NOT EDIT)[10]
Class I |
"1. Normal D-dimer level using a highly sensitive assay excludes pulmonary embolism. (Level of Evidence: A) " |
Class IIa |
"1. Further testing should be considered if D-dimer level is normal when using a less sensitive assay. (Level of Evidence: B) " |
High Clinical Probability (DO NOT EDIT)[10]
Class III |
"1. D-dimer measurement is not recommended in high clinical probability patients as a normal result does not safely exclude pulmonary embolism even when using a highly sensitive assay. (Level of Evidence: C) " |
References
- ↑ Stein PD, Hull RD, Patel KC, Olson RE, Ghali WA, Brant R, Biel RK, Bharadia V, Kalra NK (2004). "D-dimer for the exclusion of acute venous thrombosis and pulmonary embolism: a systematic review". Annals of Internal Medicine. 140 (8): 589–602. PMID 15096330. Unknown parameter
|month=
ignored (help);|access-date=
requires|url=
(help) - ↑ Ginsberg JS, Wells PS, Kearon C, Anderson D, Crowther M, Weitz JI; et al. (1998). "Sensitivity and specificity of a rapid whole-blood assay for D-dimer in the diagnosis of pulmonary embolism". Ann Intern Med. 129 (12): 1006–11. PMID 9867754.
- ↑ 3.0 3.1 Douma RA, Tan M, Schutgens RE, Bates SM, Perrier A, Legnani C; et al. (2012). "Using an age-dependent D-dimer cut-off value increases the number of older patients in whom deep vein thrombosis can be safely excluded". Haematologica. 97 (10): 1507–13. doi:10.3324/haematol.2011.060657. PMC 3487551. PMID 22511491.
- ↑ 4.0 4.1 Schouten HJ, Geersing GJ, Koek HL, Zuithoff NP, Janssen KJ, Douma RA; et al. (2013). "Diagnostic accuracy of conventional or age adjusted D-dimer cut-off values in older patients with suspected venous thromboembolism: systematic review and meta-analysis". BMJ. 346: f2492. doi:10.1136/bmj.f2492. PMC 3643284. PMID 23645857.
- ↑ 5.0 5.1 Righini M, Van Es J, Den Exter PL, et al. Age-Adjusted D-Dimer Cutoff Levels to Rule Out Pulmonary Embolism: The ADJUST-PE Study. JAMA. 2014;311(11):1117-1124. doi:10.1001/jama.2014.2135.
- ↑ Afzal A, Noor HA, Gill SA, Brawner C, Stein PD (1999). "Leukocytosis in acute pulmonary embolism". Chest. 115 (5): 1329–32. PMID 10334148.
- ↑ Kokturk N, Demir N, Oguzulgen IK, Demirel K, Ekim N (2005). "Fever in pulmonary embolism". Blood Coagul Fibrinolysis. 16 (5): 341–7. PMID 15970718.
- ↑ Hasegawa K, Sawayama T, Ibukiyama C, Muramatsu J, Ozawa Y, Kanemoto N; et al. (1993). "[Early diagnosis and management of acute pulmonary embolism: clinical evaluation those of 225 cases]". Kokyu To Junkan. 41 (8): 773–7. PMID 8351437.
- ↑ Hu ZJ, Zhou YQ, Zhang HB, Li L (2008). "[Clinical value of monitoring serum cardiac biomarkers in pulmonary thromboembolism-induced myocardial injury]". Nan Fang Yi Ke Da Xue Xue Bao. 28 (10): 1853–5. PMID 18971188.
- ↑ 10.0 10.1 10.2 10.3 10.4 Torbicki A, Perrier A, Konstantinides S, Agnelli G, Galiè N, Pruszczyk P, Bengel F, Brady AJ, Ferreira D, Janssens U, Klepetko W, Mayer E, Remy-Jardin M, Bassand JP (2008). "Guidelines on the diagnosis and management of acute pulmonary embolism: the Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC)". Eur. Heart J. 29 (18): 2276–315. doi:10.1093/eurheartj/ehn310. PMID 18757870. Retrieved 2011-12-07. Unknown parameter
|month=
ignored (help)