Meldonium: Difference between revisions
Kiran Singh (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{chembox | {{chembox | ||
| ImageFile = Mildronate.png | | ImageFile = Mildronate.png | ||
Line 32: | Line 31: | ||
'''Meldonium''' (also known as Mildronate, THP, MET-88, Mildronāts or {{Not a typo|Quaterine}}<ref>Patent Number: 1429753. http://www.surechem.org/index.php?Action=document&docId=679316&db=EPB&tab=desc&lang=EN&db_query=2%3A0%3A&markupType=all (accessed August 16, 2012).</ref>) is a clinically used anti-[[Ischemia |ischemic]] drug that is currently manufactured and marketed by [[Grindeks]], a pharmaceutical company based in [[Latvia]].<ref>JSC Grindeks. http://www.grindeks.lv (accessed May 17, 2012).</ref> It is used in Lithuania and the Russian Federation,<ref>{{cite web | url = http://www.drugs.com/international/mildronate.html | title = Mildronate | publisher = drugs.com}}</ref> but is not approved by the Food and Drug Administration for use in the United States. | '''Meldonium''' (also known as Mildronate, THP, MET-88, Mildronāts or {{Not a typo|Quaterine}}<ref>Patent Number: 1429753. http://www.surechem.org/index.php?Action=document&docId=679316&db=EPB&tab=desc&lang=EN&db_query=2%3A0%3A&markupType=all (accessed August 16, 2012).</ref>) is a clinically used anti-[[Ischemia |ischemic]] drug that is currently manufactured and marketed by [[Grindeks]], a pharmaceutical company based in [[Latvia]].<ref>JSC Grindeks. http://www.grindeks.lv (accessed May 17, 2012).</ref> It is used in Lithuania and the Russian Federation,<ref>{{cite web | url = http://www.drugs.com/international/mildronate.html | title = Mildronate | publisher = drugs.com}}</ref> but is not approved by the Food and Drug Administration for use in the United States. | ||
==Medical | ==Medical Use== | ||
Meldonium is clinically used to treat [[angina]] and [[myocardial infarction]].<ref name="pmid16633095">{{cite journal | author = Sesti C, Simkhovich BZ, Kalvinsh I, Kloner RA | title = Mildronate, a novel fatty acid oxidation inhibitor and antianginal agent, reduces myocardial infarct size without affecting hemodynamics | journal = J. Cardiovasc. Pharmacol. | volume = 47 | issue = 3 | pages = 493–9 |date=March 2006 | pmid = 16633095 | doi = 10.1097/01.fjc.0000211732.76668.d2 }}</ref><ref name="pmid17204911">{{cite journal | author = Liepinsh E, Vilskersts R, Loca D, Kirjanova O, Pugovichs O, Kalvinsh I, Dambrova M | title = Mildronate, an inhibitor of carnitine biosynthesis, induces an increase in gamma-butyrobetaine contents and cardioprotection in isolated rat heart infarction | journal = J. Cardiovasc. Pharmacol. | volume = 48 | issue = 6 | pages = 314–9 |date=December 2006 | pmid = 17204911 | doi = 10.1097/01.fjc.0000250077.07702.23 }}</ref><ref name="pmid10812052">{{cite journal | author = Hayashi Y, Kirimoto T, Asaka N, Nakano M, Tajima K, Miyake H, Matsuura N | title = Beneficial effects of MET-88, a gamma-butyrobetaine hydroxylase inhibitor in rats with heart failure following myocardial infarction | journal = Eur. J. Pharmacol. | volume = 395 | issue = 3 | pages = 217–24 |date=May 2000 | pmid = 10812052 | doi = 10.1016/S0014-2999(00)00098-4 }}</ref> The first [[clinical trial]] testing the [[efficacy]] of using a combination of meldonium and [[lisinopril]], an [[ACE inhibitor|angiotensin-converting enzyme inhibitor]], to treat [[chronic heart failure]] was reported in 2005.<ref name="trial2005">{{cite journal | author = Dzerve V, Matisone D, Kukulis I, Romanova J, Putane L, Grabauskiene˙V, Skarda I, Berzina D, Strautmanis J | title = Mildronate improves peripheral circulation in patients with chronic heart failure: results of a clinical trial (the first report) | journal = Semin Cardiol | volume = 11 | issue = 2 | pages = 56–64 | year = 2005 | month = | pmid = | pmc = | ISSN = 1648-7966 |url= http://www.seminarsincardiology.com/pdf/Seminars-2005-11-2-56-64.pdf | doi = }}</ref> The report demonstrated that the combined treatment of meldonium and [[lisinopril]] may improve the [[quality of life]], [[Aerobic_exercise#Aerobic_capacity|exercise capacity]] and mechanisms of [[Systemic circulation|peripheral circulation]] of patients with [[chronic heart failure]].<ref name="trial2005"/> A later report in 2008 further demonstrated the [[efficacy]] of combined meldonium-[[lisinopril]] treatment by showing improved [[Baroreceptor|carotid baroreceptor reflex]] in patients with [[chronic heart failure]].<ref name="trial2008">{{cite journal | author = Vitols A, Voita D, Dzerve V | title = Mildronate improves carotid baroreceptor reflex function in patients with chronic heart failure | journal = Semin Cardiovasc Med | volume = 13 | issue = | pages = 6 | year = 2008 | month = | pmid = | pmc = | ISSN = |url= http://www.seminarsincardiology.com/pdf/SeminarsCVMed-2007-13-6.pdf | doi = }}</ref> In February 2010, the [[clinical trial]] testing the [[efficacy]] and [[Pharmacovigilance|safety]] of meldonium treatment in combination with [[Exercise_intolerance#Treatment|standard exercise tolerance therapy]] on [[angina]] patients was successfully completed.<ref name="trial1a">JSC Grindeks. http://www.grindeks.lv/en/for-investors/stock-news/mildronate_clinical_trial (accessed May 17, 2012).</ref> The studies revealed that meldonium treatment significantly improves the [[Exercise intolerance|exercise tolerance]] of [[Stable_angina#Stable_angina|stable angina]] patients.<ref name="trial1b">{{cite journal | author = Dzerve V, Matisone D, Pozdnyakov Y, Oganov R | title = Mildronate improves the exercise tolerance in patients with stable angina: results of a long term clinical trial | journal = Semin Cardiovasc Med | volume = 16 | issue = | pages = 3 | year = 2010 | month = | pmid = | pmc = | ISSN = |url= http://www.seminarsincardiology.com/pdf/SeminarsCVMed-2010-16-3.pdf | doi = }}</ref><ref name="pmid22186118">{{cite journal | author = Dzerve V, MILSS I Study Group | title = A Dose-Dependent Improvement in Exercise Tolerance in Patients With Stable Angina Treated With Mildronate: A Clinical Trial "MILSS I" | journal = Medicina (Kaunas) | volume = 47 | issue = 10 | pages = 544–51 | year = 2011 | month = | pmid = 22186118 | pmc = | ISSN = |url= http://medicina.kmu.lt/1110/1110-04e.pdf | doi = }}</ref> A [[clinical trial|phase II clinical trial]] on the [[efficacy]] and [[Pharmacovigilance|safety]] of meldonium for [[Stroke|acute ischemic stroke]] was completed in August 2013 and the studies showed that meldonium is as effective and safe as [[cinepazide]] injection.<ref name="trial2a">{{cite journal | author = Zhu Y, Zhang G, Zhao J, Li D, Yan X, Liu J, Liu X, Zhao H, Xia J, Zhang X, Li Z, Zhang B, Guo Z, Feng L, Zhang Z, Qu F, Zhao, G | title = Efficacy and safety of mildronate for acute ischemic stroke: a randomized, double-blind, active-controlled phase II multicenter trial | journal = Clin Drug Investig | volume = | issue = | pages = | year = 2013 | month = | pmid = | pmc = | doi = 10.1007/s40261-013-0121-x }}</ref><ref name="trial2b">ClinicalTrials.gov A service of the U.S. National Institutes of Health. http://clinicaltrials.gov/ct2/show/NCT01831011?rcv_d=14&lup_s=03%2F16%2F2013&lup_d=30 (accessed Aug 21, 2012).</ref> | Meldonium is clinically used to treat [[angina]] and [[myocardial infarction]].<ref name="pmid16633095">{{cite journal | author = Sesti C, Simkhovich BZ, Kalvinsh I, Kloner RA | title = Mildronate, a novel fatty acid oxidation inhibitor and antianginal agent, reduces myocardial infarct size without affecting hemodynamics | journal = J. Cardiovasc. Pharmacol. | volume = 47 | issue = 3 | pages = 493–9 |date=March 2006 | pmid = 16633095 | doi = 10.1097/01.fjc.0000211732.76668.d2 }}</ref><ref name="pmid17204911">{{cite journal | author = Liepinsh E, Vilskersts R, Loca D, Kirjanova O, Pugovichs O, Kalvinsh I, Dambrova M | title = Mildronate, an inhibitor of carnitine biosynthesis, induces an increase in gamma-butyrobetaine contents and cardioprotection in isolated rat heart infarction | journal = J. Cardiovasc. Pharmacol. | volume = 48 | issue = 6 | pages = 314–9 |date=December 2006 | pmid = 17204911 | doi = 10.1097/01.fjc.0000250077.07702.23 }}</ref><ref name="pmid10812052">{{cite journal | author = Hayashi Y, Kirimoto T, Asaka N, Nakano M, Tajima K, Miyake H, Matsuura N | title = Beneficial effects of MET-88, a gamma-butyrobetaine hydroxylase inhibitor in rats with heart failure following myocardial infarction | journal = Eur. J. Pharmacol. | volume = 395 | issue = 3 | pages = 217–24 |date=May 2000 | pmid = 10812052 | doi = 10.1016/S0014-2999(00)00098-4 }}</ref> The first [[clinical trial]] testing the [[efficacy]] of using a combination of meldonium and [[lisinopril]], an [[ACE inhibitor|angiotensin-converting enzyme inhibitor]], to treat [[chronic heart failure]] was reported in 2005.<ref name="trial2005">{{cite journal | author = Dzerve V, Matisone D, Kukulis I, Romanova J, Putane L, Grabauskiene˙V, Skarda I, Berzina D, Strautmanis J | title = Mildronate improves peripheral circulation in patients with chronic heart failure: results of a clinical trial (the first report) | journal = Semin Cardiol | volume = 11 | issue = 2 | pages = 56–64 | year = 2005 | month = | pmid = | pmc = | ISSN = 1648-7966 |url= http://www.seminarsincardiology.com/pdf/Seminars-2005-11-2-56-64.pdf | doi = }}</ref> The report demonstrated that the combined treatment of meldonium and [[lisinopril]] may improve the [[quality of life]], [[Aerobic_exercise#Aerobic_capacity|exercise capacity]] and mechanisms of [[Systemic circulation|peripheral circulation]] of patients with [[chronic heart failure]].<ref name="trial2005"/> A later report in 2008 further demonstrated the [[efficacy]] of combined meldonium-[[lisinopril]] treatment by showing improved [[Baroreceptor|carotid baroreceptor reflex]] in patients with [[chronic heart failure]].<ref name="trial2008">{{cite journal | author = Vitols A, Voita D, Dzerve V | title = Mildronate improves carotid baroreceptor reflex function in patients with chronic heart failure | journal = Semin Cardiovasc Med | volume = 13 | issue = | pages = 6 | year = 2008 | month = | pmid = | pmc = | ISSN = |url= http://www.seminarsincardiology.com/pdf/SeminarsCVMed-2007-13-6.pdf | doi = }}</ref> In February 2010, the [[clinical trial]] testing the [[efficacy]] and [[Pharmacovigilance|safety]] of meldonium treatment in combination with [[Exercise_intolerance#Treatment|standard exercise tolerance therapy]] on [[angina]] patients was successfully completed.<ref name="trial1a">JSC Grindeks. http://www.grindeks.lv/en/for-investors/stock-news/mildronate_clinical_trial (accessed May 17, 2012).</ref> The studies revealed that meldonium treatment significantly improves the [[Exercise intolerance|exercise tolerance]] of [[Stable_angina#Stable_angina|stable angina]] patients.<ref name="trial1b">{{cite journal | author = Dzerve V, Matisone D, Pozdnyakov Y, Oganov R | title = Mildronate improves the exercise tolerance in patients with stable angina: results of a long term clinical trial | journal = Semin Cardiovasc Med | volume = 16 | issue = | pages = 3 | year = 2010 | month = | pmid = | pmc = | ISSN = |url= http://www.seminarsincardiology.com/pdf/SeminarsCVMed-2010-16-3.pdf | doi = }}</ref><ref name="pmid22186118">{{cite journal | author = Dzerve V, MILSS I Study Group | title = A Dose-Dependent Improvement in Exercise Tolerance in Patients With Stable Angina Treated With Mildronate: A Clinical Trial "MILSS I" | journal = Medicina (Kaunas) | volume = 47 | issue = 10 | pages = 544–51 | year = 2011 | month = | pmid = 22186118 | pmc = | ISSN = |url= http://medicina.kmu.lt/1110/1110-04e.pdf | doi = }}</ref> A [[clinical trial|phase II clinical trial]] on the [[efficacy]] and [[Pharmacovigilance|safety]] of meldonium for [[Stroke|acute ischemic stroke]] was completed in August 2013 and the studies showed that meldonium is as effective and safe as [[cinepazide]] injection.<ref name="trial2a">{{cite journal | author = Zhu Y, Zhang G, Zhao J, Li D, Yan X, Liu J, Liu X, Zhao H, Xia J, Zhang X, Li Z, Zhang B, Guo Z, Feng L, Zhang Z, Qu F, Zhao, G | title = Efficacy and safety of mildronate for acute ischemic stroke: a randomized, double-blind, active-controlled phase II multicenter trial | journal = Clin Drug Investig | volume = | issue = | pages = | year = 2013 | month = | pmid = | pmc = | doi = 10.1007/s40261-013-0121-x }}</ref><ref name="trial2b">ClinicalTrials.gov A service of the U.S. National Institutes of Health. http://clinicaltrials.gov/ct2/show/NCT01831011?rcv_d=14&lup_s=03%2F16%2F2013&lup_d=30 (accessed Aug 21, 2012).</ref> | ||
Line 47: | Line 46: | ||
To date, meldonium is one of [[Latvia]]'s most exported products, and can be readily obtained in countries including [[Russia]], [[Ukraine]], [[Moldova]], [[Belarus]], [[Azerbaijan]] and [[Armenia]].<ref>Biotech Intelligence. http://www.biotech-intelligence.com/html/html/pool_7/91cc83b0e3f8b4edbbda2a42ae43e1b1.html (accessed May 17, 2012).</ref><ref>PMR. Pharmaceutical, Healthcare and Medical Sector in Central and Eastern Europe: Industry News, Analyses and Market Data. http://www.ceepharma.com/63359/Grindex-names-Russian-manufacturing-partner-for-Mildronate.shtml (accessed May 17, 2012).</ref><ref>Evaluate Pharma. https://www.evaluatepharma.com/Universal/View.aspx?type=Story&id=137196 (accessed May 17, 2012).</ref> | To date, meldonium is one of [[Latvia]]'s most exported products, and can be readily obtained in countries including [[Russia]], [[Ukraine]], [[Moldova]], [[Belarus]], [[Azerbaijan]] and [[Armenia]].<ref>Biotech Intelligence. http://www.biotech-intelligence.com/html/html/pool_7/91cc83b0e3f8b4edbbda2a42ae43e1b1.html (accessed May 17, 2012).</ref><ref>PMR. Pharmaceutical, Healthcare and Medical Sector in Central and Eastern Europe: Industry News, Analyses and Market Data. http://www.ceepharma.com/63359/Grindex-names-Russian-manufacturing-partner-for-Mildronate.shtml (accessed May 17, 2012).</ref><ref>Evaluate Pharma. https://www.evaluatepharma.com/Universal/View.aspx?type=Story&id=137196 (accessed May 17, 2012).</ref> | ||
==Mechanism of | ==Mechanism of Action== | ||
The chemical name of meldonium is 3-(2,2,2-trimethylhydraziniumyl)propionate,<ref>Sigma Aldrich. http://www.sigmaaldrich.com/catalog/product/sigma/m5199 (accessed May 17, 2012).</ref><ref>{{cite journal | author = Simkhovich BZ, Shutenko ZV, Meirena DV, Khagi KB, Mezapuķe RJ, Molodchina TN, Kalviņs IJ, Lukevics E | title = 3-(2,2,2-Trimethylhydrazinium)propionate (THP)--a novel gamma-butyrobetaine hydroxylase inhibitor with cardioprotective properties | journal = Biochem. Pharmacol. | volume = 37 | issue = 2 | pages = 195–202 |date=January 1988 | pmid = 3342076 | doi =10.1016/0006-2952(88)90717-4 }}</ref> a structural analogue of γ-butyrobetaine, with a NH group replacing the CH<sub>2</sub> at the C-4 position of γ-butyrobetaine. γ-Butyrobetaine is a precursor in the [[carnitine biosynthesis|biosynthesis of carnitine]].<ref>{{cite journal | author = Fraenkel G, Friedman S | title = Carnitine | journal = Vitam. Horm. | volume = 15 | pages = 73–118 | year = 1957 | pmid = 13530702 | doi=10.1016/s0083-6729(08)60508-7}}</ref> | The chemical name of meldonium is 3-(2,2,2-trimethylhydraziniumyl)propionate,<ref>Sigma Aldrich. http://www.sigmaaldrich.com/catalog/product/sigma/m5199 (accessed May 17, 2012).</ref><ref>{{cite journal | author = Simkhovich BZ, Shutenko ZV, Meirena DV, Khagi KB, Mezapuķe RJ, Molodchina TN, Kalviņs IJ, Lukevics E | title = 3-(2,2,2-Trimethylhydrazinium)propionate (THP)--a novel gamma-butyrobetaine hydroxylase inhibitor with cardioprotective properties | journal = Biochem. Pharmacol. | volume = 37 | issue = 2 | pages = 195–202 |date=January 1988 | pmid = 3342076 | doi =10.1016/0006-2952(88)90717-4 }}</ref> a structural analogue of γ-butyrobetaine, with a NH group replacing the CH<sub>2</sub> at the C-4 position of γ-butyrobetaine. γ-Butyrobetaine is a precursor in the [[carnitine biosynthesis|biosynthesis of carnitine]].<ref>{{cite journal | author = Fraenkel G, Friedman S | title = Carnitine | journal = Vitam. Horm. | volume = 15 | pages = 73–118 | year = 1957 | pmid = 13530702 | doi=10.1016/s0083-6729(08)60508-7}}</ref> | ||
Line 56: | Line 55: | ||
==Forms== | ==Forms== | ||
* 250 mg capsules N60<ref>JSC Grindeks. http://www.grindeks.lv/en/products/prescription-medicine/grindeks-brand-products/mildronate (accessed May 17, 2012).</ref> | * 250 mg capsules N60<ref>JSC Grindeks. http://www.grindeks.lv/en/products/prescription-medicine/grindeks-brand-products/mildronate (accessed May 17, 2012).</ref> | ||
* 500 mg capsules N60 | * 500 mg capsules N60 | ||
* Injection 10% 5 ml N10 | * Injection 10% 5 ml N10 | ||
==See | ==See Also== | ||
* [[Carnitine]] | * [[Carnitine]] | ||
* [[Angina]] | * [[Angina]] | ||
Line 69: | Line 67: | ||
==References== | ==References== | ||
{{Reflist|2}} | {{Reflist|2}} | ||
[[Category:Antianginals]] | [[Category:Antianginals]] | ||
[[Category:Cardiovascular Drugs]] | [[Category:Cardiovascular Drugs]] | ||
[[Category:Drug]] | [[Category:Drug]] |
Revision as of 21:50, 23 July 2014
Names | |
---|---|
IUPAC name
2-(2-Carboxyethyl)-1,1,1-trimethylhydrazinium
| |
Other names
Mildronate; THP, MET-88, Mildronāts or Quaterine
| |
Identifiers | |
3D model (JSmol)
|
|
ChemSpider | |
ECHA InfoCard | Lua error in Module:Wikidata at line 879: attempt to index field 'wikibase' (a nil value). Lua error in Module:Wikidata at line 879: attempt to index field 'wikibase' (a nil value). |
PubChem CID
|
|
| |
| |
Properties | |
C6H15N2O2+ | |
Molar mass | 147.19 g/mol |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). | |
Infobox references | |
WikiDoc Resources for Meldonium |
Articles |
---|
Most recent articles on Meldonium |
Media |
Evidence Based Medicine |
Clinical Trials |
Ongoing Trials on Meldonium at Clinical Trials.gov Clinical Trials on Meldonium at Google
|
Guidelines / Policies / Govt |
US National Guidelines Clearinghouse on Meldonium
|
Books |
News |
Commentary |
Definitions |
Patient Resources / Community |
Patient resources on Meldonium Discussion groups on Meldonium Directions to Hospitals Treating Meldonium Risk calculators and risk factors for Meldonium
|
Healthcare Provider Resources |
Causes & Risk Factors for Meldonium |
Continuing Medical Education (CME) |
International |
|
Business |
Experimental / Informatics |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Kiran Singh, M.D. [2]
Overview
Meldonium (also known as Mildronate, THP, MET-88, Mildronāts or Quaterine[1]) is a clinically used anti-ischemic drug that is currently manufactured and marketed by Grindeks, a pharmaceutical company based in Latvia.[2] It is used in Lithuania and the Russian Federation,[3] but is not approved by the Food and Drug Administration for use in the United States.
Medical Use
Meldonium is clinically used to treat angina and myocardial infarction.[4][5][6] The first clinical trial testing the efficacy of using a combination of meldonium and lisinopril, an angiotensin-converting enzyme inhibitor, to treat chronic heart failure was reported in 2005.[7] The report demonstrated that the combined treatment of meldonium and lisinopril may improve the quality of life, exercise capacity and mechanisms of peripheral circulation of patients with chronic heart failure.[7] A later report in 2008 further demonstrated the efficacy of combined meldonium-lisinopril treatment by showing improved carotid baroreceptor reflex in patients with chronic heart failure.[8] In February 2010, the clinical trial testing the efficacy and safety of meldonium treatment in combination with standard exercise tolerance therapy on angina patients was successfully completed.[9] The studies revealed that meldonium treatment significantly improves the exercise tolerance of stable angina patients.[10][11] A phase II clinical trial on the efficacy and safety of meldonium for acute ischemic stroke was completed in August 2013 and the studies showed that meldonium is as effective and safe as cinepazide injection.[12][13]
Besides clinical trials, a number of scientific research projects have also been conducted to improve the efficacy of meldonium and its applicability to other diseases. For example, a report published by Vilskersts et al. suggested that the effect of mildronate treatment may be enhanced with co-treatment of other compounds such as orotic acid.[14]
Using animal models, the applications of meldonium, sometimes in tandem with other drugs such as metformin, have shown beneficial effects on neurological disorder[15][16] and diabetes.[17]
Meldonium may also be beneficial for the treatment of seizures and alcohol intoxication.[18]
Recent reports also suggest that meldonium may improve the ability of learning and memory, as the drug changes the expression of hippocampal proteins related to synaptic plasticity using rat model.[19]
Meldonium was reported to elevate the concentrations of γ-butyrobetaine hydroxylase in testes tissues;[5] in addition, long term (90 days) administration of meldonium was reported to improve sexual performance, sperm motility and concentration of testosterone in boars, although further studies are needed to confirm the potential of using meldonium as a sperm motility and sperm quality-enhancing agent.[20]
To date, meldonium is one of Latvia's most exported products, and can be readily obtained in countries including Russia, Ukraine, Moldova, Belarus, Azerbaijan and Armenia.[21][22][23]
Mechanism of Action
The chemical name of meldonium is 3-(2,2,2-trimethylhydraziniumyl)propionate,[24][25] a structural analogue of γ-butyrobetaine, with a NH group replacing the CH2 at the C-4 position of γ-butyrobetaine. γ-Butyrobetaine is a precursor in the biosynthesis of carnitine.[26]
The mechanism of action of meldonium is to act as a fatty acid oxidation inhibitor, presumably by inhibiting enzymes in the carnitine biosynthesis pathway such as γ-butyrobetaine hydroxylase.[27] γ-Butyrobetaine hydroxylase is an enzyme that belongs to the 2-oxoglutarate (2OG) oxygenase superfamily and catalyses the formation of L-carnitine from γ-butyrobetaine.[28][29] X-ray crystallographic and in vitro biochemical studies suggest meldonium binds to the substrate pocket of γ-butyrobetaine hydroxylase and acts as a competitive substrate/inhibitor to form malonic acid semialdehyde, dimethylamine, formaldehyde, 3-amino-4-(methyamino)butanoic acid and (1-methylimidazolidin-4-yl)acetic acid,[30][31] likely via a Steven's type rearrangement mechanism.[32] Mildronate is a potent γ-butyrobetaine hydroxylase inhibitor, with a half maximal inhibitory concentration (IC50) value of 62 μM.[33] Meldonium is an example of a non-peptidyl substrate mimic inhibitor for human 2OG oxygenase.[34]
Meldonium has also been shown by NMR to bind to carnitine acetyltransferase.[35] Carnitine acetyltransferase belongs to a family of ubiquitous enzymes that play pivotal roles in cellular energy metabolism.[36] Meldonium therefore may act as a regulator of energy metabolism. Meldonium is a relatively weak inhibitor to carnitine acetyltransferase (when compared to γ-butyrobetaine hydroxylase), with an inhibition constant (KI) of 1.6 mM.
Forms
- 250 mg capsules N60[37]
- 500 mg capsules N60
- Injection 10% 5 ml N10
See Also
References
- ↑ Patent Number: 1429753. http://www.surechem.org/index.php?Action=document&docId=679316&db=EPB&tab=desc&lang=EN&db_query=2%3A0%3A&markupType=all (accessed August 16, 2012).
- ↑ JSC Grindeks. http://www.grindeks.lv (accessed May 17, 2012).
- ↑ "Mildronate". drugs.com.
- ↑ Sesti C, Simkhovich BZ, Kalvinsh I, Kloner RA (March 2006). "Mildronate, a novel fatty acid oxidation inhibitor and antianginal agent, reduces myocardial infarct size without affecting hemodynamics". J. Cardiovasc. Pharmacol. 47 (3): 493–9. doi:10.1097/01.fjc.0000211732.76668.d2. PMID 16633095.
- ↑ 5.0 5.1 Liepinsh E, Vilskersts R, Loca D, Kirjanova O, Pugovichs O, Kalvinsh I, Dambrova M (December 2006). "Mildronate, an inhibitor of carnitine biosynthesis, induces an increase in gamma-butyrobetaine contents and cardioprotection in isolated rat heart infarction". J. Cardiovasc. Pharmacol. 48 (6): 314–9. doi:10.1097/01.fjc.0000250077.07702.23. PMID 17204911.
- ↑ Hayashi Y, Kirimoto T, Asaka N, Nakano M, Tajima K, Miyake H, Matsuura N (May 2000). "Beneficial effects of MET-88, a gamma-butyrobetaine hydroxylase inhibitor in rats with heart failure following myocardial infarction". Eur. J. Pharmacol. 395 (3): 217–24. doi:10.1016/S0014-2999(00)00098-4. PMID 10812052.
- ↑ 7.0 7.1 Dzerve V, Matisone D, Kukulis I, Romanova J, Putane L, Grabauskiene˙V, Skarda I, Berzina D, Strautmanis J (2005). "Mildronate improves peripheral circulation in patients with chronic heart failure: results of a clinical trial (the first report)" (PDF). Semin Cardiol. 11 (2): 56–64. ISSN 1648-7966.
- ↑ Vitols A, Voita D, Dzerve V (2008). "Mildronate improves carotid baroreceptor reflex function in patients with chronic heart failure" (PDF). Semin Cardiovasc Med. 13: 6.
- ↑ JSC Grindeks. http://www.grindeks.lv/en/for-investors/stock-news/mildronate_clinical_trial (accessed May 17, 2012).
- ↑ Dzerve V, Matisone D, Pozdnyakov Y, Oganov R (2010). "Mildronate improves the exercise tolerance in patients with stable angina: results of a long term clinical trial" (PDF). Semin Cardiovasc Med. 16: 3.
- ↑ Dzerve V, MILSS I Study Group (2011). "A Dose-Dependent Improvement in Exercise Tolerance in Patients With Stable Angina Treated With Mildronate: A Clinical Trial "MILSS I"" (PDF). Medicina (Kaunas). 47 (10): 544–51. PMID 22186118.
- ↑ Zhu Y, Zhang G, Zhao J, Li D, Yan X, Liu J, Liu X, Zhao H, Xia J, Zhang X, Li Z, Zhang B, Guo Z, Feng L, Zhang Z, Qu F, Zhao, G (2013). "Efficacy and safety of mildronate for acute ischemic stroke: a randomized, double-blind, active-controlled phase II multicenter trial". Clin Drug Investig. doi:10.1007/s40261-013-0121-x.
- ↑ ClinicalTrials.gov A service of the U.S. National Institutes of Health. http://clinicaltrials.gov/ct2/show/NCT01831011?rcv_d=14&lup_s=03%2F16%2F2013&lup_d=30 (accessed Aug 21, 2012).
- ↑ Vilskersts R, Liepinsh E, Kuka J, Cirule H, Veveris M, Kalvinsh I, Dambrova M (2009). "Myocardial infarct size-limiting and anti-arrhythmic effects of mildronate orotate in the rat heart". Cardiovasc. Drugs Ther. 23 (4): 281–8. doi:10.1007/s10557-009-6179-2.
- ↑ Sjakste N, Gutcaits A, Kalvinsh I (2005). "Mildronate: an antiischemic drug for neurological indications". CNS Drug Rev. 11 (2): 151–68. doi:10.1111/j.1527-3458.2005.tb00267.x. PMID 16007237.
- ↑ Pupure J, Isajevs S, Skapare E, Rumaks J, Svirskis S, Svirina D, Kalvinsh I, Klusa V (February 2010). "Neuroprotective properties of mildronate, a mitochondria-targeted small molecule". Neurosci. Lett. 470 (2): 100–5. doi:10.1016/j.neulet.2009.12.055. PMID 20036318.
- ↑ Liepinsh E, Skapare E, Svalbe B, Makrecka M, Cirule H, Dambrova M (May 2011). "Anti-diabetic effects of mildronate alone or in combination with metformin in obese Zucker rats". Eur. J. Pharmacol. 658 (2–3): 277–83. doi:10.1016/j.ejphar.2011.02.019. PMID 21371472.
- ↑ Zvejniece L, Svalbe B, Makrecka M, Liepinsh E, Kalvinsh I, Dambrova M (September 2010). "Mildronate exerts acute anticonvulsant and antihypnotic effects". Behav Pharmacol. 21 (5–6): 548–55. doi:10.1097/FBP.0b013e32833d5a59. PMID 20661137.
- ↑ Klusa V, Muceniece R, Isajevs S, Isajeva D, Beitnere U, Mandrika I, Pupure J, Rumaks J, Jansone B, Kalvinsh I, Vinters HV (May 2013). "Mildronate enhances learning/memory and changes hippocampal protein expression in trained rats". Pharmacol Biochem Behav. 106: 68–76. doi:10.1016/j.pbb.2013.03.012. PMID 23537732.
- ↑ Bruveris Z, Antane V, Misane I, Rimeicans J, Lusis I, Auzans A, Mangale M, Mednis A, Stonans I (January 2013). "Effects of meldonium on sexual performance, sperm motility, testes morphology and blood biochemical markers in boars". Anim. Reprod. Sci. 136 (4): 303–9. doi:10.1016/j.anireprosci.2012.11.007. PMID 23238051.
- ↑ Biotech Intelligence. http://www.biotech-intelligence.com/html/html/pool_7/91cc83b0e3f8b4edbbda2a42ae43e1b1.html (accessed May 17, 2012).
- ↑ PMR. Pharmaceutical, Healthcare and Medical Sector in Central and Eastern Europe: Industry News, Analyses and Market Data. http://www.ceepharma.com/63359/Grindex-names-Russian-manufacturing-partner-for-Mildronate.shtml (accessed May 17, 2012).
- ↑ Evaluate Pharma. https://www.evaluatepharma.com/Universal/View.aspx?type=Story&id=137196 (accessed May 17, 2012).
- ↑ Sigma Aldrich. http://www.sigmaaldrich.com/catalog/product/sigma/m5199 (accessed May 17, 2012).
- ↑ Simkhovich BZ, Shutenko ZV, Meirena DV, Khagi KB, Mezapuķe RJ, Molodchina TN, Kalviņs IJ, Lukevics E (January 1988). "3-(2,2,2-Trimethylhydrazinium)propionate (THP)--a novel gamma-butyrobetaine hydroxylase inhibitor with cardioprotective properties". Biochem. Pharmacol. 37 (2): 195–202. doi:10.1016/0006-2952(88)90717-4. PMID 3342076.
- ↑ Fraenkel G, Friedman S (1957). "Carnitine". Vitam. Horm. 15: 73–118. doi:10.1016/s0083-6729(08)60508-7. PMID 13530702.
- ↑ Vaz FM, Wanders RJA (2002). "Carnitine biosynthesis in mammals". Biochem. J. 361: 417–29. doi:10.1042/0264-6021:3610417.
- ↑ Vaz FM, van Gool S, Ofman R, IJlst L, Wanders RJ (Nov 1998). "Carnitine biosynthesis: identification of the cDNA encoding human gamma-butyrobetaine hydroxylase". Biochem Biophys Res Commun. 250 (2): 506–10. doi:10.1006/bbrc.1998.9343. PMID 9753662.
- ↑ "Entrez Gene: BBOX1 butyrobetaine (gamma), 2-oxoglutarate dioxygenase (gamma-butyrobetaine hydroxylase) 1".
- ↑ Leung IK, Krojer TJ, Kochan GT, Henry L, von Delft F, Claridge TD, Oppermann U, McDonough MA, Schofield CJ (December 2010). "Structural and mechanistic studies on γ-butyrobetaine hydroxylase". Chem. Biol. 17 (12): 1316–24. doi:10.1016/j.chembiol.2010.09.016. PMID 21168767.
- ↑ Spaniol M, Brooks H, Auer L, Zimmermann A, Solioz M, Stieger B, Krähenbühl S (March 2001). "Development and characterization of an animal model of carnitine deficiency". Eur. J. Biochem. 268 (6): 1876–87. doi:10.1046/j.1432-1327.2001.02065.x. PMID 11248709.
- ↑ Henry L, Leung IKH, Claridge TDW, Schofield CJ (Aug 2012). "γ-Butyrobetaine hydroxylase catalyses a Stevens type rearrangement". Bioorg. Med. Chem. Lett. 22 (15): 4975&ndash, 4978. doi:10.1016/j.bmcl.2012.06.024. PMID 22765904.
- ↑ Tars K, Rumnieks J, Zeltins A, Kazaks A, Kotelovica S, Leonciks A, Sharipo J, Viksna A, Kuka J, Liepinsh E, Dambrova M (August 2010). "Crystal structure of human gamma-butyrobetaine hydroxylase". Biochem. Biophys. Res. Commun. 398 (4): 634–9. doi:10.1016/j.bbrc.2010.06.121. PMID 20599753.
- ↑ Rose NR, McDonough MA, King ON, Kawamura A, Schofield CJ (August 2011). "Inhibition of 2-oxoglutarate dependent oxygenases". Chem Soc Rev. 40 (8): 4364–97. doi:10.1039/c0cs00203h. PMID 21390379.
- ↑ Jaudzems K, Kuka J, Gutsaits A, Zinovjevs K, Kalvinsh I, Liepinsh E, Liepinsh E, Dambrova M (December 2009). "Inhibition of carnitine acetyltransferase by mildronate, a regulator of energy metabolism". J. Enzyme Inhib. Med. Chem. 24: 1269–75. doi:10.3109/14756360902829527. PMID 19912061.
- ↑ Wu D, Govindasamy L, Lian W, Gu Y, Kukar T, Agbandje-McKenna M, McKenna R (April 2003). "Structure of Human Carnitine Acetyltransferase Molecular Basis for Fatty Acyl Transfer". J. Biol. Chem. 278: 13159–65. doi:10.1074/jbc.M212356200. PMID 12562770.
- ↑ JSC Grindeks. http://www.grindeks.lv/en/products/prescription-medicine/grindeks-brand-products/mildronate (accessed May 17, 2012).